Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping

被引:30
作者
He, Xiaobo [1 ,2 ]
Tang, Jibo [3 ]
Hu, Huatian [3 ]
Shi, Junjun [3 ]
Guan, Zhiqiang [1 ,2 ]
Zhang, Shunping [1 ,2 ]
Xu, Hongxing [1 ,2 ]
机构
[1] Wuhan Univ, Minist Educ, Sch Phys & Technol, Ctr Nanosci & Nanotechnol, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Minist Educ, Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
electroluminescence; optical antennas; inelastic tunneling; self-assembled monolayers; nanoparticle; dielectrophoresis; PHOTON-EMISSION; LIGHT-EMISSION; ELECTRON; GOLD; NANOPARTICLES; SPECTROSCOPY; GENERATION; PLASMONS;
D O I
10.1021/acsnano.9b06376
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An electrically driven optical antenna (EDOA) provides a nanoscale light-emitting scheme that is appealing for biosensors, plasmonic displays, and on-chip optoelectronic circuits. The EDOA (consisting of metal nanoparticles (NPs)) excited by inelastic tunneling electrons has attracted broad interest due to its terahertz modulation bandwidth and microelectronics-compatible dimensions. Currently, the efficient fabrication of EDOA is hampered by the ultrasmall size of NPs and the requirement of controllable preparation. Here, we overcome this limitation by accurately positioning thiol-covered gold NPs onto predesigned electrodes using dielectrophoresis trapping. The combination of a high-quality molecule tunnel barrier and the template trapping ensures that the EDOA can operate stably in ambient conditions. More importantly, the template trapping allows fabrication of EDOA with different numbers and arrangements of NPs by controlling the size and orientation of the template. This technology provides a way to fabricate controllable optoelectronic devices based on NPs and is promising for compact and smart photonic devices.
引用
收藏
页码:14041 / 14047
页数:7
相关论文
共 46 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/nphoton.2014.228, 10.1038/NPHOTON.2014.228]
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[3]   Ultralow-Power Electronic Trapping of Nanoparticles with Sub-10 nm Gold Nanogap Electrodes [J].
Barik, Avijit ;
Chen, Xiaoshu ;
Oh, Sang-Hyun .
NANO LETTERS, 2016, 16 (10) :6317-6324
[4]   Electrical Excitation of Surface Plasmons [J].
Bharadwaj, Palash ;
Bouhelier, Alexandre ;
Novotny, Lukas .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[5]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[6]   Nanoantenna for Electrical Generation of Surface Plasmon Polaritons [J].
Bigourdan, Florian ;
Hugonin, Jean-Paul ;
Marquier, Francois ;
Sauvan, Christophe ;
Greffet, Jean-Jacques .
PHYSICAL REVIEW LETTERS, 2016, 116 (10)
[7]   Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe [J].
Chen, Wen ;
Zhang, Shunping ;
Kang, Meng ;
Liu, Weikang ;
Ou, Zhenwei ;
Li, Yang ;
Zhang, Yexin ;
Guan, Zhiqiang ;
Xu, Hongxing .
LIGHT-SCIENCE & APPLICATIONS, 2018, 7
[8]   Probing of sub-picometer vertical differential resolutions using cavity plasmons [J].
Chen, Wen ;
Zhang, Shunping ;
Deng, Qian ;
Xu, Hongxing .
NATURE COMMUNICATIONS, 2018, 9
[9]  
Clavero C, 2014, NAT PHOTONICS, V8, P95, DOI [10.1038/NPHOTON.2013.238, 10.1038/nphoton.2013.238]
[10]   Electrically Excited Plasmonic Nanoruler for Biomolecule Detection [J].
Dathe, Andre ;
Ziegler, Mario ;
Huebner, Uwe ;
Fritzsche, Wolfgang ;
Stranik, Ondrej .
NANO LETTERS, 2016, 16 (09) :5728-5736