The role of wingbeat frequency and amplitude in flight power

被引:11
作者
Krishnan, Krishnamoorthy [1 ]
Garde, Baptiste [1 ]
Bennison, Ashley [2 ,3 ]
Cole, Nik C. [4 ]
Cole, Emma-L [1 ]
Darby, Jamie [2 ]
Elliott, Kyle H. [5 ]
Fell, Adam [6 ]
Gomez-Laich, Agustina [7 ,8 ]
de Grissac, Sophie [9 ]
Jessopp, Mark [2 ]
Lempidakis, Emmanouil [1 ]
Mizutani, Yuichi [10 ]
Prudor, Aurelien [11 ]
Quetting, Michael [12 ]
Quintana, Flavio [13 ]
Robotka, Hermina [14 ]
Roulin, Alexandre [15 ]
Ryan, Peter G. [16 ]
Schalcher, Kim [15 ]
Schoombie, Stefan [16 ]
Tatayah, Vikash [17 ]
Tremblay, Fred [5 ]
Weimerskirch, Henri [11 ]
Whelan, Shannon [5 ]
Wikelski, Martin [12 ,18 ]
Yoda, Ken [10 ]
Hedenstrom, Anders [19 ]
Shepard, Emily L. C. [1 ]
机构
[1] Swansea Univ, Dept Biosci, Swansea SA1 8PP, W Glam, Wales
[2] Univ Coll Cork, Sch Biol Earth & Environm Sci, Cork T23 N73 K, Ireland
[3] NERC, British Antarctic Survey, Cambridge, England
[4] Durrell Wildlife Conservat Trust, La Profonde Rue, Jersey JE3 5BP, England
[5] McGill Univ, Dept Nat Resources Sci, Ste Anne De Bellevue, PQ, Canada
[6] Univ Stirling, Biol & Environm Sci, Stirling FK9 4LA, Scotland
[7] Consejo Nacl Invest Cient & Tecn, Dept Ecol Genet & Evolut, Pabellon II Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[8] Consejo Nacl Invest Cient & Tecn, Inst Ecol Genet & Evolut Buenos Aires IEGEBA, Pabellon II Ciudad Univ,C1428EGA, Buenos Aires, DF, Argentina
[9] Diomedea Sci Res & Sci Commun, 819 Route La Jars, F-38950 Quaix En Chartreuse, France
[10] Nagoya Univ, Grad Sch Environm Studies, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648601, Japan
[11] Ctr Etud Biol Chize CNRS, Villiers En Bois, France
[12] Max Planck Inst Anim Behav, Dept Migrat, Radolfzell am Bodensee, Germany
[13] Consejo Nacl Invest Cient & Tecn, Inst Biol Organismos Marinos IBIOMAR, Blvd Brown,U9120ACD, RA-2915 Puerto Madryn, Chubut, Argentina
[14] Max Planck Inst Ornithol, Seewiesen, Germany
[15] Univ Lausanne, Dept Ecol & Evolut, Bldg Biophore, CH-1015 Lausanne, Switzerland
[16] Univ Cape Town, FitzPatrick Inst African Ornithol, Rondebosch, South Africa
[17] Mauritian Wildlife Fdn, Grannum Rd, Vacoas 73418, Mauritius
[18] Univ Konstanz, Ctr Adv Study Collect Behav, D-78457 Constance, Germany
[19] Lund Univ, Ctr Anim Movement Res, Dept Biol, Lund, Sweden
基金
瑞士国家科学基金会; 瑞典研究理事会; 加拿大自然科学与工程研究理事会; 欧洲研究理事会; 芬兰科学院;
关键词
energy expenditure; accelerometry; kinematics; bio-logging; movement ecology; WIND-TUNNEL; MECHANICAL POWER; NYMPHICUS-HOLLANDICUS; ENERGY-EXPENDITURE; PECTORALIS-MUSCLE; METABOLIC POWER; VORTEX WAKE; WIDE-RANGE; KINEMATICS; HUMMINGBIRD;
D O I
10.1098/rsif.2022.0168
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Body-mounted accelerometers provide a new prospect for estimating power use in flying birds, as the signal varies with the two major kinematic determinants of aerodynamic power: wingbeat frequency and amplitude. Yet wingbeat frequency is sometimes used as a proxy for power output in isolation. There is, therefore, a need to understand which kinematic parameter birds vary and whether this is predicted by flight mode (e.g. accelerating, ascending/descending flight), speed or morphology. We investigate this using high-frequency acceleration data from (i) 14 species flying in the wild, (ii) two species flying in controlled conditions in a wind tunnel and (iii) a review of experimental and field studies. While wingbeat frequency and amplitude were positively correlated, R-2 values were generally low, supporting the idea that parameters can vary independently. Indeed, birds were more likely to modulate wingbeat amplitude for more energy-demanding flight modes, including climbing and take-off. Nonetheless, the striking variability, even within species and flight types, highlights the complexity of describing the kinematic relationships, which appear sensitive to both the biological and physical context. Notwithstanding this, acceleration metrics that incorporate both kinematic parameters should be more robust proxies for power than wingbeat frequency alone.
引用
收藏
页数:15
相关论文
共 79 条
  • [1] The physiology and biomechanics of avian flight at high altitude
    Altshuler, DL
    Dudley, R
    [J]. INTEGRATIVE AND COMPARATIVE BIOLOGY, 2006, 46 (01) : 62 - 71
  • [2] Kinematics of hovering hummingbird flight along simulated and natural elevational gradients
    Altshuler, DL
    Dudley, R
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2003, 206 (18) : 3139 - +
  • [3] Flight muscle power increases with strain amplitude and decreases with cycle frequency in zebra finches (Taeniopygia guttata)
    Bahlman, Joseph W.
    Baliga, Vikram B.
    Altshuler, Douglas L.
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2020, 223 (21)
  • [4] Barton Kamil, 2023, CRAN
  • [5] Kinematics and power requirements of ascending and descending flight in the pigeon (Columba livia)
    Berg, Angela M.
    Biewener, Andrew A.
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2008, 211 (07) : 1120 - 1130
  • [6] Bilo D., 1984, BIONA REP, V3, P87
  • [7] Biro D, 2002, J EXP BIOL, V205, P3833
  • [8] The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations
    Bishop, C. M.
    Spivey, R. J.
    Hawkes, L. A.
    Batbayar, N.
    Chua, B.
    Frappell, P. B.
    Milsom, W. K.
    Natsagdorj, T.
    Newman, S. H.
    Scott, G. R.
    Takekawa, J. Y.
    Wikelski, M.
    Butler, P. J.
    [J]. SCIENCE, 2015, 347 (6219) : 250 - 254
  • [9] Does the metabolic rate-flight speed relationship vary among geometrically similar birds of different mass?
    Bundle, Matthew W.
    Hansen, Kacia S.
    Dial, Kenneth P.
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2007, 210 (06) : 1075 - 1083
  • [10] Chai P, 1996, J EXP BIOL, V199, P2285