Experimental and Theoretical Insights into Enhanced Hydrogen Evolution over PtCo Nanoalloys Anchored on a Nitrogen-Doped Carbon Matrix

被引:11
作者
Guo, Jiangnan [1 ]
Liu, Jinlong [1 ]
Mao, Xichen [1 ]
Chu, Shengqi [2 ]
Zhang, Xinxin [1 ]
Luo, Ziyu [1 ]
Li, Jie [1 ]
Wang, Bowen [1 ]
Jia, Chuankun [3 ]
Qian, Dong [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[3] Changsha Univ Sci & Technol, Inst Energy Storage Technol, Changsha 410114, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; OXYGEN EVOLUTION; ELECTROCATALYSTS; NANOPARTICLES; GRAPHENE; PERFORMANCE; CATALYST; HYBRID; ARRAYS; COO;
D O I
10.1021/acs.jpclett.2c01040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The identification of synergistic effect of Pt-based alloys on hydrogen evolution reaction (HER) requires a combination of experimental studies and theoretical calculations. Here, we present the construction of uniform PtCo nanoparticles grown on N-doped carbon frameworks via pyrolyzing Pt and Co ions adsorbed polyaniline, whereby the nanostructure of the nanoalloys can be effectively tuned by controlling the calcination temperature. As-prepared PtCo@NC-900 shows the optimal HER performance in 0.5 M H2SO4, resulting in a high mass activity of 4.31 A mg(Pt)(-1) and excellent operation durability, which far exceeds that of commercial 20 wt % Pt/C (0.30 A mg(P)(t)(-1)). Density functional theory calculations further reveal that the improved HER activity on PtCo(111) is originated from the strong electronic interaction between Pt and Co with favorable electron transfer, allowing for a more suitable binding strength for hydrogen (i.e., Delta G(*H) = -0.164 eV) compared with that of pristine Pt(111) (-0.287 eV).
引用
收藏
页码:5195 / 5203
页数:9
相关论文
共 50 条
  • [21] Active sites and mechanism on nitrogen-doped carbon catalyst for hydrogen evolution reaction
    Long, Gui-fa
    Wan, Kai
    Liu, Ming-yao
    Liang, Zhen-xing
    Piao, Jin-hua
    Tsiakaras, Panagiotis
    JOURNAL OF CATALYSIS, 2017, 348 : 151 - 159
  • [22] Hierarchically interconnected nitrogen-doped carbon nanosheets for an efficient hydrogen evolution reaction
    Wang, Hao
    Yi, Qinghua
    Gao, Lijun
    Gao, Yongqian
    Liu, Tingting
    Jiang, Ying-Bing
    Sun, Yinghui
    Zou, Guifu
    NANOSCALE, 2017, 9 (42) : 16342 - 16348
  • [23] An advanced hollow bimetallic carbide/nitrogen-doped carbon nanotube for efficient catalysis of oxygen reduction and hydrogen evolution and oxygen evolution reaction
    Feng, Xiaogeng
    Bo, Xiangjie
    Guo, Liping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 : 69 - 77
  • [24] Ruthenium/nitrogen-doped carbon as an electrocatalyst for efficient hydrogen evolution in alkaline solution
    Zhang, J.
    Liu, P.
    Wang, G.
    Zhang, P. P.
    Zhuang, X. D.
    Chen, M. W.
    Weidinger, I. M.
    Feng, X. L.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (48) : 25314 - 25318
  • [25] Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogen-Doped Carbon Nanotubes for Hydrogen Evolution Reaction
    Ekspong, Joakim
    Sharifi, Tiva
    Shchukarev, Andrey
    Klechikov, Alexey
    Wagberg, Thomas
    Gracia-Espino, Eduardo
    ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (37) : 6766 - 6776
  • [26] Vertically Aligned MoS2 Nanosheets on Nitrogen-Doped Carbon Sheets for Enhanced Electrocatalytic Hydrogen Evolution
    Zhong, Lin
    Cheng, Hao
    Zhou, Hu
    Chen, Boyuan
    Zhuang, Yongyue
    Chen, Junfeng
    Yuan, Aihua
    CHEMISTRYSELECT, 2021, 6 (37): : 10092 - 10096
  • [27] Low-ruthenium-content NiRu nanoalloys encapsulated in nitrogen-doped carbon as highly efficient and pH-universal electrocatalysts for the hydrogen evolution reaction
    Xu, You
    Yin, Shuli
    Li, Chunjie
    Deng, Kai
    Xue, Hairong
    Li, Xiaonian
    Wang, Hongjing
    Wang, Liang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (04) : 1376 - 1381
  • [28] Highly dispersive NiCo2S4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction
    Xu, Jinchao
    Rong, Jian
    Qiu, Fengxian
    Zhu, Yao
    Mao, Kaili
    Fang, Yuanyuan
    Yang, Dongya
    Zhang, Tao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 555 : 294 - 303
  • [29] Au nanoparticle-sensitized nitrogen-doped carbon applied for localized surface plasmon enhanced hydrogen evolution reaction
    Liang, Tong
    Tang, Yujie
    Song, Yunqi
    Xie, Kemin
    Ma, Yan
    Yao, Yao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 94 : 1106 - 1113
  • [30] NiRu nanoparticles encapsulated in a nitrogen-doped carbon matrix as a highly efficient electrocatalyst for the hydrogen evolution reaction
    Xu, Shikai
    Li, Zhiqiang
    Chu, Kainian
    Yao, Ge
    Xu, Yang
    Niu, Ping
    Zheng, Fangcai
    DALTON TRANSACTIONS, 2020, 49 (39) : 13647 - 13654