An evaluation of source apportionment of fine OC and PM2.5 by multiple methods: APHH-Beijing campaigns as a case study

被引:16
作者
Xu, Jingsha [1 ]
Srivastava, Deepchandra [1 ]
Wu, Xuefang [1 ,2 ]
Hou, Siqi [1 ,3 ]
Vu, Tuan V. [1 ,9 ]
Liu, Di [1 ,4 ]
Sun, Yele [4 ]
Vlachou, Athanasia [5 ]
Moschos, Vaios [5 ]
Salazar, Gary [6 ,7 ]
Szidat, Soenke [6 ,7 ]
Prevot, Andre S. H. [5 ]
Fu, Pingqing [4 ,8 ]
Harrison, Roy M. [1 ,10 ]
Shi, Zongbo [1 ]
机构
[1] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, W Midlands, England
[2] China Univ Geosci, Sch Geol & Mineral Resources, Xueyuan Rd 29, Beijing, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Mol Sci BNLMS, Inst Chem, State Key Lab Struct Chem Unstable & Stable Speci, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[5] Paul Scherrer Inst, Lab Atmospher Chem, CH-5232 Villigen, Switzerland
[6] Univ Bern, Dept Chem & Biochem, CH-3012 Bern, Switzerland
[7] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[8] Tianjin Univ, Sch Earth Syst Sci, Inst Surface Earth Syst Sci, Tianjin, Peoples R China
[9] Imperial Coll London, Sch Publ Hlth, London W2 1PG, England
[10] King Abdulaziz Univ, Dept Environm Sci, Ctr Excellence Environm Studies, POB 80203, Jeddah 21589, Saudi Arabia
基金
英国自然环境研究理事会;
关键词
POSITIVE MATRIX FACTORIZATION; AEROSOL MASS-SPECTROMETER; CARBONACEOUS AEROSOLS; ORGANIC AEROSOL; CHEMICAL-COMPOSITION; SOURCE PROFILES; RADIOCARBON; AMBIENT; CHINA; AMS;
D O I
10.1039/d0fd00095g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study aims to critically evaluate the source apportionment of fine particles by multiple receptor modelling approaches, including carbon mass balance modelling of filter-based radiocarbon (C-14) data, Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF) analysis on filter-based chemical speciation data, and PMF analysis on Aerosol Mass Spectrometer (AMS-PMF) or Aerosol Chemical Speciation Monitor (ACSM-PMF) data. These data were collected as part of the APHH-Beijing (Atmospheric Pollution and Human Health in a Chinese Megacity) field observation campaigns from 10(th) November to 12(th) December in winter 2016 and from 22(nd) May to 24(th) June in summer 2017. C-14 analysis revealed the predominant contribution of fossil fuel combustion to carbonaceous aerosols in winter compared with non-fossil fuel sources, which is supported by the results from other methods. An extended Gelencser (EG) method incorporating C-14 data, as well as the CMB and AMS/ACSM-PMF methods, generated a consistent source apportionment for fossil fuel related primary organic carbon. Coal combustion, traffic and biomass burning POC were comparable for CMB and AMS/ACSM-PMF. There are uncertainties in the EG method when estimating biomass burning and cooking OC. The POC from cooking estimated by different methods was poorly correlated, suggesting a large uncertainty when differentiating this source type. The PM2.5 source apportionment results varied between different methods. Through a comparison and correlation analysis of CMB, PMF and AMS/ACSM-PMF, the CMB method appears to give the most complete and representative source apportionment of Beijing aerosols. Based upon the CMB results, fine aerosols in Beijing were mainly secondary inorganic ion formation, secondary organic aerosol formation, primary coal combustion and from biomass burning emissions.
引用
收藏
页码:290 / 313
页数:24
相关论文
共 57 条
[1]   Sensitivity of a Chemical Mass Balance model for PM2.5 to source profiles for differing styles of cooking [J].
Abdullahi, K. L. ;
Delgado-Saborit, J. M. ;
Harrison, Roy M. .
ATMOSPHERIC ENVIRONMENT, 2018, 178 :282-285
[2]   Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results [J].
Brown, Steven G. ;
Eberly, Shelly ;
Paatero, Pentti ;
Norris, Gary A. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 518 :626-635
[3]   Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor [J].
Budisulistiorini, Sri Hapsari ;
Canagaratna, Manjula R. ;
Croteau, Philip L. ;
Marth, Wendy J. ;
Baumann, Karsten ;
Edgerton, Eric S. ;
Shaw, Stephanie L. ;
Knipping, Eladio M. ;
Worsnop, Douglas R. ;
Jayne, John T. ;
Gold, Avram ;
Surratt, Jason D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (11) :5686-5694
[4]   Evaluation of the CMB and PMF models using organic molecular markers in fine particulate matter collected during the Pittsburgh Air Quality Study [J].
Bullock, Kerry R. ;
Duvall, Rachelle M. ;
Norris, Gary A. ;
McDow, Stephen R. ;
Hays, Michael D. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (29) :6897-6904
[5]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[6]   Mass reconstruction methods for PM2.5: a review [J].
Chow, Judith C. ;
Lowenthal, Douglas H. ;
Chen, L-W Antony ;
Wang, Xiaoliang ;
Watson, John G. .
AIR QUALITY ATMOSPHERE AND HEALTH, 2015, 8 (03) :243-263
[7]   Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach [J].
Crippa, M. ;
Canonaco, F. ;
Lanz, V. A. ;
Aijala, M. ;
Allan, J. D. ;
Carbone, S. ;
Capes, G. ;
Ceburnis, D. ;
Dall'Osto, M. ;
Day, D. A. ;
DeCarlo, P. F. ;
Ehn, M. ;
Eriksson, A. ;
Freney, E. ;
Hildebrandt Ruiz, L. ;
Hillamo, R. ;
Jimenez, J. L. ;
Junninen, H. ;
Kiendler-Scharr, A. ;
Kortelainen, A. -M. ;
Kulmala, M. ;
Laaksonen, A. ;
Mensah, A. ;
Mohr, C. ;
Nemitz, E. ;
O'Dowd, C. ;
Ovadnevaite, J. ;
Pandis, S. N. ;
Petaja, T. ;
Poulain, L. ;
Saarikoski, S. ;
Sellegri, K. ;
Swietlicki, E. ;
Tiitta, P. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) :6159-6176
[8]   Evolution and multidisciplinary frontiers of 14C aerosol science [J].
Currie, LA .
RADIOCARBON, 2000, 42 (01) :115-126
[9]   Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California [J].
Day, Douglas A. ;
Liu, Shang ;
Russell, Lynn M. ;
Ziemann, Paul J. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (16) :1970-1979
[10]   Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille [J].
El Haddad, I. ;
Marchand, N. ;
Wortham, H. ;
Piot, C. ;
Besombes, J. -L. ;
Cozic, J. ;
Chauvel, C. ;
Armengaud, A. ;
Robin, D. ;
Jaffrezo, J. -L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (05) :2039-2058