Monitoring aggregation of a pH-responsive polymer via proton exchange

被引:4
|
作者
Chakraborty, Ipsita [1 ]
Mukherjee, Ishita [1 ]
Haldar, Ujjal [1 ]
De, Priyadarsi [1 ]
Bhattacharyya, Rangeet [2 ]
机构
[1] Indian Inst Sci Educ & Res Kolkata, Dept Chem Sci, Mohanpur 741246, India
[2] Indian Inst Sci Educ & Res Kolkata, Dept Phys Sci, Mohanpur 741246, India
关键词
SPIN-ECHO; RELAXATION;
D O I
10.1039/c7cp02013a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the changes in the macro-structure of amphiphilic pH-responsive polymers remains a relevant issue due to their potential use as drug delivery carriers. Since some of the amphiphilic polymers are known to exchange hydrogen ions with an aqueous solvent, we monitor the effective change of the surface to volume ratio of such polymer aggregates using solution- state nuclear magnetic resonance (NMR) spectroscopy. The surface to volume ratio with the help of UV-visible spectroscopy is shown to yield the average diameter of the polymer aggregates. We show that the proposed method not only satisfactorily corroborates the existing notions of how the aggregation of these polymers takes place as a function of pH, but also provides a quantitative estimate of the size of the aggregates.
引用
收藏
页码:17360 / 17365
页数:6
相关论文
共 50 条
  • [21] pH-responsive modulation of insulin aggregation and structural transformation of the aggregates
    Smirnova, Ekaterina
    Safenkova, Irina
    Stein-Margolina, Vita
    Shubin, Vladimir
    Polshakov, Vladimir
    Gurvits, Bella
    BIOCHIMIE, 2015, 109 : 49 - 59
  • [22] Spatiotemporal Control Release of pH-Responsive Polymeric Micelles via Photochemically Induced Proton Generation
    Wang, Tung-Yun
    Chen, Ching-Yi
    ACS APPLIED BIO MATERIALS, 2019, 2 (08) : 3659 - 3667
  • [23] pH-responsive materials for optical monitoring of wound status
    Gamerith, Clemens
    Luschnig, Daniel
    Ortner, Andreas
    Pietrzik, Nikolas
    Guse, Jan-Hinrich
    Burnet, Michael
    Haalboom, Marieke
    van der Palen, Job
    Heinzle, Andrea
    Sigl, Eva
    Gubitz, Georg M.
    SENSORS AND ACTUATORS B-CHEMICAL, 2019, 301
  • [24] Proton enrichment and surface charge dynamics in pH-responsive nanopipettes
    Duleba, Dominik
    Johnson, Robert P.
    ELECTROCHIMICA ACTA, 2024, 479
  • [25] Insights into the Efficient Release of the Polyacrylamide Drag Reducer via a pH-Responsive Inverse Polymer Emulsion
    Sun, Yuhai
    Qing, Miaomiao
    Qi, Jie
    Qu, Huimin
    Shu, Qinglin
    Liang, Huiyong
    Shen, Shi
    Wang, Na
    Lu, Hongsheng
    Lv, Xin
    LANGMUIR, 2024, 40 (12) : 6394 - 6401
  • [26] Designing pH-Responsive alizarin hybrids with easily tunable physicochemical properties via polymer grafting
    Szadkowski, Boleslaw
    Raj, Wojciech
    Beyou, Emmanuel
    Pietrasik, Joanna
    Marzec, Anna
    DYES AND PIGMENTS, 2024, 229
  • [27] A pH-responsive riboregulator
    Nechooshtan, Gal
    Elgrably-Weiss, Maya
    Sheaffer, Abigail
    Westhof, Eric
    Altuvia, Shoshy
    GENES & DEVELOPMENT, 2009, 23 (22) : 2650 - 2662
  • [28] pH-responsive polymer micelles for methotrexate delivery at tumor microenvironments
    Darlen Carrillo-Castillo, Teresa
    Servando Castro-Carmona, Javier
    Luna-Velasco, Antonia
    Armando Zaragoza-Contreras, Erasto
    E-POLYMERS, 2020, 20 (01) : 624 - 635
  • [29] All-Star Polymer Multilayers as pH-Responsive Nanofilms
    Kim, Byeong-Su
    Gao, Haifeng
    Argun, Avni A.
    Matyjaszewski, Krzysztof
    Hammond, Paula T.
    MACROMOLECULES, 2009, 42 (01) : 368 - 375
  • [30] Carboxylic acid modified pH-responsive composite polymer particles
    Jannat, Nur E.
    Alam, Md Ashraful
    Rahman, M. M.
    Rahman, M. A.
    Hossain, M. K.
    Hossain, S.
    Minami, H.
    Ahmad, Hasan
    JOURNAL OF POLYMER ENGINEERING, 2019, 39 (07) : 671 - 678