Aharonov-Bohm effect in a Coulomb-type potential under the influence of a cutoff point

被引:4
作者
Bakke, K. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051900 Joao Pessoa, Paraiba, Brazil
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2021年 / 36卷 / 19期
关键词
Attractive potential proportional to the inverse of the radial distance; Coulomb-type potential; cutoff point; Aharonov-Bohm effect bound states; rotating reference frame; OSCILLATOR SUBJECT; BOUND-STATES; EARTHS ROTATION; QUANTUM; SCATTERING; VIOLATION; ATOMS;
D O I
10.1142/S0217751X21501360
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We analyze the influence of a cutoff point on a Coulomb-type potential that stems from the interaction of an electron with electric fields. This cutoff point establishes a forbidden region for the electron. Then, we search for bound state solutions to the Schrodinger equation. In addition, we consider a rotating reference frame. We show that the effects of rotation break the degeneracy of the energy levels. Further, we discuss the Aharonov-Bohm effect for bound states.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Anandan J., 2004, Relativity in Rotating Frames, P361
[2]  
[Anonymous], 1965, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[3]   Elastic scattering and bound states in the Aharonov-Bohm potential superimposed by an attractive ρ-2 potential [J].
Audretsch, J ;
Skarzhinsky, VD ;
Voronov, BL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (02) :235-250
[4]   Aharonov-Casher effect in the presence of spin-dependent potential [J].
Bakke, K. ;
Furtado, C. .
ANNALS OF PHYSICS, 2020, 422
[5]   Semiclassical treatment of an attractive inverse-square potential in an elastic medium with a disclination [J].
Bakke, K. ;
Furtado, C. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2020, 17 (12)
[6]   On the Klein-Gordon oscillator subject to a Coulomb-type potential [J].
Bakke, K. ;
Furtado, C. .
ANNALS OF PHYSICS, 2015, 355 :48-54
[7]  
Bawin M, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.034701
[8]   Singular inverse square potential in coordinate space with a minimal length [J].
Bouaziz, Djamil ;
Birkandan, Tolga .
ANNALS OF PHYSICS, 2017, 387 :62-74
[9]   Renormalization of the inverse square potential [J].
Camblong, HE ;
Epele, LN ;
Fanchiotti, H ;
Canal, CAC .
PHYSICAL REVIEW LETTERS, 2000, 85 (08) :1590-1593
[10]   Anomaly in conformal quantum mechanics:: From molecular physics to black holes -: art. no. 125013 [J].
Camblong, HE ;
Ordóñez, CR .
PHYSICAL REVIEW D, 2003, 68 (12)