Rate of decay of stable periodic solutions of Duffing equations

被引:26
作者
Chen, Hongbin
Li, Yi [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Xian Jiaotong Univ, Dept Math, Xian 02982667909, Peoples R China
[3] Hunan Normal Univ, Dept Math, Changsha, Hunan, Peoples R China
关键词
periodic solution; stability; rate of decay;
D O I
10.1016/j.jde.2007.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the second-order equations of Duffing type. Bounds for the derivative of the restoring force are given that ensure the existence and uniqueness of a periodic solution. Furthermore, the stability of the unique periodic solution is analyzed; the sharp rate of exponential decay is determined for a solution that is near to the unique periodic solution. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:493 / 503
页数:11
相关论文
共 9 条
[1]   OPTIMAL INTERVALS OF STABILITY OF A FORCED OSCILLATOR [J].
ALONSO, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (07) :2031-2040
[2]  
ALONSO JM, 1995, NONLINEAR ANAL-THEOR, V25, P297
[3]  
Belitskii G. R., 1973, FUNCTIONAL ANAL APPL, V7, P268
[4]   Exact multiplicity for periodic solutions of Duffing type [J].
Chen, HB ;
Li, Y ;
Hou, XJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (1-2) :115-124
[5]   LARGE-AMPLITUDE PERIODIC OSCILLATIONS IN SUSPENSION BRIDGES - SOME NEW CONNECTIONS WITH NONLINEAR-ANALYSIS [J].
LAZER, AC ;
MCKENNA, PJ .
SIAM REVIEW, 1990, 32 (04) :537-578
[6]   ON THE EXISTENCE OF STABLE PERIODIC-SOLUTIONS OF DIFFERENTIAL-EQUATIONS OF DUFFING TYPE [J].
LAZER, AC ;
MCKENNA, PJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 110 (01) :125-133
[7]   EXISTENCE, UNIQUENESS, AND STABILITY OF OSCILLATIONS IN DIFFERENTIAL-EQUATIONS WITH ASYMMETRIC NONLINEARITIES [J].
LAZER, AC ;
MCKENNA, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 315 (02) :721-739
[8]  
Mawhin J., 1993, Lecture Notes in Math., LNM, V1537, P74
[9]  
ORTEGA R, 1989, B UNIONE MAT ITAL, V3B, P533