WEIGHTED EIGENFUNCTION ESTIMATES WITH APPLICATIONS TO COMPRESSED SENSING

被引:22
作者
Burq, Nicolas [1 ]
Dyatlov, Semyon [2 ]
Ward, Rachel [3 ]
Zworski, Maciej [2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
eigenfunctions; surfaces of revolution; compressed sensing; UNCERTAINTY PRINCIPLES; RECONSTRUCTION; FOURIER;
D O I
10.1137/110858604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using tools from semiclassical analysis, we give weighted L-infinity estimates for eigenfunctions of strictly convex surfaces of revolution. These estimates give rise to new sampling techniques and provide improved bounds on the number of samples necessary for recovering sparse eigenfunction expansions on surfaces of revolution. On the sphere, our estimates imply that any function can be efficiently recovered to within a factor of its best s-term approximation in the first N spherical harmonics from its values at m greater than or similar to sN(1/6) log(4)(N) sampling points, improving on the previous bound of m greater than or similar to sN(1/4) log(4)(N) necessary sampling points. In particular, any function having an s-sparse expansion can be recovered exactly from such undersampled measurements.
引用
收藏
页码:3481 / 3501
页数:21
相关论文
共 31 条
[1]  
Abrial P., 2008, STAT METHODOL, V5, P289
[2]   Semi-classical wavefront set and Fourier integral operators [J].
Alexandrova, Ivana .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02) :241-263
[3]  
[Anonymous], 1994, ANAL LINEAR PARTIAL
[4]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[5]  
[Anonymous], 2002, An introduction to semiclassical and microlocal analysis
[6]  
[Anonymous], 2010, Theoretical foundations and numerical methods for sparse recovery, DOI DOI 10.1515/9783110226157.1
[7]   Restrictions of the Laplace-Beltrami eigenfunctions to submanifolds [J].
Burq, N. ;
Gerard, P. ;
Tzvetkov, N. .
DUKE MATHEMATICAL JOURNAL, 2007, 138 (03) :445-486
[8]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[9]  
Charbonnel A. M., 1983, ANN FAC SCI TOULOUSE, V5, P109, DOI DOI 10.5802/AFST.591
[10]  
Cohen A, 2009, J AM MATH SOC, V22, P211