LOW COMPLEXITY STATIC AND DYNAMIC SPARSE BAYESIAN LEARNING COMBINING BP, VB AND EP MESSAGE PASSING

被引:0
作者
Thomas, Christi Kurisummoottil [1 ]
Slock, Dirk [1 ]
机构
[1] EURECOM, Sophia Antipolis, France
来源
CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS | 2019年
关键词
D O I
10.1109/ieeeconf44664.2019.9048860
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sparse Bayesian Learning (SBL) provides sophisticated (state) model order selection with unknown support distribution. This allows to handle problems with big state dimensions and relatively limited data by exploiting variations in parameter importance. The techniques proposed in this paper allow to handle the extension of SBL to time-varying states, modeled as diagonal first-order auto-regressive (DAR(1)) processes with unknown parameters to be estimated also. Adding the parameters to the state leads to an augmented state and a non-linear (at least bilinear) state-space model. The proposed approach, which applies also to more general non-linear models, uses a combination of belief propagation (BP), Variational Bayes (VB) or mean field (MF) techniques, and Expectation Propagation (EP) to approximate the posterior marginal distributions of the scalar factors. We propose Fisher Information Matrix analysis to determine the variable split between the use of BP and VB allowing to stay optimal in terms of Laplace approximation.
引用
收藏
页码:685 / 689
页数:5
相关论文
共 20 条
[1]  
Donoho D. L., 2009, PNAS, V106
[2]  
Fleury Bernard H., 1999, IEEE J SEL AREAS COM, V17
[3]  
Fortunati S., 2017, IEEE SIG P MAG
[4]  
Gelfand A. E., 1999, J AM STAT ASS MAR
[5]  
Giri R., 2016, IEEE T SIG PROCESS
[6]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[7]  
Li J., 2013, IEEE T SIG P, V58
[8]  
Minka Thomas P, 2001, A family of algorithms for approximate Bayesian inference
[9]  
Rangan S., 2011, Proceedings of the 2011 IEEE International Symposium on Information Theory - ISIT, P2168, DOI 10.1109/ISIT.2011.6033942
[10]  
Riegler E., 2013, IEEE T INFO THEO, V59