A Bayesian semiparametric approach to stochastic frontiers and productivity

被引:30
|
作者
Tsionas, Mike G. [1 ]
Mallick, Sushanta K. [2 ]
机构
[1] Univ Lancaster, Management Sch, Lancaster LA1 4YX, Bailrigg, England
[2] Queen Mary Univ London, Sch Business & Management, Mile End Rd, London E1 4NS, England
关键词
Productivity and competitiveness; Stochastic frontier model; Endogenous Regressors; Sequential Monte Carlo; Particle-filtering; EFFICIENCY; MODEL; PERFORMANCE; DYNAMICS; BANKING;
D O I
10.1016/j.ejor.2018.10.026
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we take up the analysis of production functions / frontiers removing the assumptions of known functional form for the productivity equation, given the heterogeneity of productivity and the endogeneity of inputs at firm level. The assumption of exogenous regressors is removed through taking account of the first order conditions of profit maximization. We introduce latent dynamic stochastic productivity in our framework and perform Bayesian analysis using a Sequential Monte Carlo Particle-Filtering approach. We investigate the performance of the new approach relative to alternative methods in the literature, in a substantive application to Indian non-financial firms, and find that total factor productivity (TFP) growth has remained stagnant at firm level in India despite rapid growth at the aggregate level, with technical efficiency or catching-up effect driving TFP growth in the recent years rather than technological progress or frontier shift. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 50 条
  • [41] Bayesian Approach for the Measurement of Tourism Performance: A Case of Stochastic Frontier Models
    Assaf, A. George
    Oh, Haemoon
    Tsionas, Mike
    JOURNAL OF TRAVEL RESEARCH, 2017, 56 (02) : 172 - 186
  • [42] Comparative efficiency of Chilean water utilities: a Bayesian stochastic frontier approach
    Maziotis, Alexandros
    Molinos-Senante, Maria
    URBAN WATER JOURNAL, 2024, 21 (08) : 965 - 975
  • [43] Flexible mixture modelling of stochastic frontiers
    J. E. Griffin
    M. F. J. Steel
    Journal of Productivity Analysis, 2008, 29 : 33 - 50
  • [44] Estimation and evaluation of productivity change and its drivers in the English and Welsh water sector: a stochastic cost frontier approach
    Molinos-Senante, Maria Molinos
    Maziotis, Alexandros
    URBAN WATER JOURNAL, 2019, 16 (09) : 625 - 633
  • [45] The GMM estimation of semiparametric spatial stochastic frontier models
    Hou, Zhezhi
    Zhao, Shunan
    Kumbhakar, Subal C.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 305 (03) : 1450 - 1464
  • [46] Semiparametric Stochastic Modeling of the Rate Function in Longitudinal Studies
    Zhu, Bin
    Taylor, Jeremy M. G.
    Song, Peter X. -K.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (496) : 1485 - 1495
  • [47] Bayesian Semiparametric Regression Analysis of Multivariate Panel Count Data
    Wang, Chunling
    Lin, Xiaoyan
    STATS, 2022, 5 (02): : 477 - 493
  • [48] Decomposition of total factor productivity in world health production: a stochastic frontier approach
    Keng, Shao-Hsun
    Li, Yang
    APPLIED ECONOMICS, 2010, 42 (23) : 3011 - 3021
  • [49] Productivity and unemployment: an ABM approach
    Fernandez-Marquez, Carlos M.
    Fuentes, Matias
    Jose Martinez, Juan
    Vazquez, Francisco J.
    JOURNAL OF ECONOMIC INTERACTION AND COORDINATION, 2021, 16 (01) : 133 - 151
  • [50] HARA frontiers of optimal portfolios in stochastic markets
    Canakoglu, Ethem
    Ozekici, Suleyman
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 221 (01) : 129 - 137