On the relation between Rayleigh-Benard convection and Lorenz system

被引:31
作者
Chen, ZM [1 ]
Price, WG
机构
[1] Univ Southampton, Sch Engn Sci Ship Sci, Southampton SO17 1BJ, Hants, England
[2] Nankai Univ, Sch Math, Tianjin 300071, Peoples R China
关键词
D O I
10.1016/j.chaos.2005.08.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on an extension of the Lorenz truncation scheme, a chaotic mathematical model is developed to provide a profile of the chaotic attractor associated with the Rayleigh-Benard convection problem in a plane fluid motion. The attractor of the Lorenz system is a cross-section of the attractor of the proposed model, in which solutions always exist in circles mirroring those appearing in the convection problem. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:571 / 578
页数:8
相关论文
共 17 条
[1]  
Benard H., Rev. Gen. Sci. Pure Appl, V11, P1309
[2]  
Benard H., 1900, REV GEN SCI PURES AP, V11, P1261, DOI DOI 10.1051/JPHYSTAP:019000090051300
[3]  
Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA
[4]   A NOTE ON KAPLAN-YORKE-TYPE ESTIMATES ON THE FRACTAL DIMENSION OF CHAOTIC ATTRACTORS [J].
CHEN, ZM .
CHAOS SOLITONS & FRACTALS, 1993, 3 (05) :575-582
[5]   A NOTE ON ELASTIC TURBULENCE AND DIFFUSION [J].
ELNASCHIE, MS ;
ALATHEL, S ;
KAPITANIAK, T .
JOURNAL OF SOUND AND VIBRATION, 1992, 155 (03) :515-522
[6]   THE CONNECTION BETWEEN FLUID AND ELASTOSTATICAL TURBULENCE [J].
ELNASCHIE, MS ;
ELNASHAIE, SSEH .
MATHEMATICAL AND COMPUTER MODELLING, 1991, 15 (11) :17-23
[7]   SOLITON CHAOS MODELS FOR MECHANICAL AND BIOLOGICAL ELASTIC CHAINS [J].
ELNASCHIE, MS ;
KAPITANIAK, T .
PHYSICS LETTERS A, 1990, 147 (5-6) :275-281
[8]  
Gelting A. V., 1998, RAYLEIGH BENARD CONV
[9]   PERIOD 3 IMPLIES CHAOS [J].
LI, TY ;
YORKE, JA .
AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (10) :985-992
[10]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO