The moduli space of curves is rigid

被引:3
|
作者
Hacking, Paul [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
moduli; curve; rigidity;
D O I
10.2140/ant.2008.2.809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the moduli stack (M) over bar (g,n) of stable curves of genus g with n marked points is rigid, that is, has no infinitesimal deformations. This confirms the first case of a principle proposed by Kapranov. It can also be viewed as a version of Mostow rigidity for the mapping class group.
引用
收藏
页码:809 / 818
页数:10
相关论文
共 50 条
  • [1] Higher cycles on the moduli space of stable curves
    Ohba, K
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2000, 52 (02) : 231 - 267
  • [2] A compactification of the moduli space of multiple-spin curves
    Sertoez, Emre Can
    GEOMETRIAE DEDICATA, 2023, 217 (05)
  • [3] A compactification of the moduli space of multiple-spin curves
    Emre Can Sertöz
    Geometriae Dedicata, 2023, 217
  • [4] The Chow ring of the moduli space of curves of genus six
    Penev, Nikola
    Vakil, Ravi
    ALGEBRAIC GEOMETRY, 2015, 2 (01): : 123 - 136
  • [5] The p-rank strata of the moduli space of hyperelliptic curves
    Achter, Jeffrey D.
    Pries, Rachel
    ADVANCES IN MATHEMATICS, 2011, 227 (05) : 1846 - 1872
  • [6] THE MODULI SPACE OF ETALE DOUBLE COVERS OF GENUS 5 CURVES IS UNIRATIONAL
    Izadi, Elham
    Lo Giudice, Marco
    Sankaran, Gregory Kumar
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 239 (01) : 39 - 52
  • [7] A characterization of bielliptic curves and applications to their moduli spaces
    Casnati G.
    Del Centina A.
    Annali di Matematica Pura ed Applicata, 2002, 181 (2) : 213 - 221
  • [8] Moduli of curves on Enriques surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Galati, Concettina
    Knutsen, Andreas Leopold
    ADVANCES IN MATHEMATICS, 2020, 365
  • [9] Moduli of real pointed quartic curves
    Rieken, Sander
    GEOMETRIAE DEDICATA, 2016, 185 (01) : 171 - 203
  • [10] Moduli of real pointed quartic curves
    Sander Rieken
    Geometriae Dedicata, 2016, 185 : 171 - 203