Structures and Transport Properties of CaCO3 Melts under Earth's Mantle Conditions

被引:20
作者
Du, Xiangpo [1 ]
Wu, Min [2 ]
Tse, John S. [1 ,3 ]
Pan, Yuanming [4 ]
机构
[1] Jilin Univ, Key State Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
[2] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[4] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada
来源
ACS EARTH AND SPACE CHEMISTRY | 2018年 / 2卷 / 01期
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
carbonate; Earth's mantle; viscosity; melt; molecular dynamics; CALCIUM-CARBONATE; ULTRASOFT PSEUDOPOTENTIALS; OPTICAL-PROPERTIES; TRANSFORMATION; PRESSURES; ARAGONITE; VISCOSITY; MODEL;
D O I
10.1021/acsearthspacechem.7b00100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbonatitic and carbonated silicate melts generated from melting in the mantle are the chief agents for liberating carbon from the solid Earth and exert important controls on Earth's deep carbon cycle. However, significant gaps in our knowledge about the carbonatitic melts under conditions pertinent to Earth's deep interior remain due to experimental challenges. Here, we report on a first-principles molecular dynamics (FPMD) calculation of calcium carbonate (CaCO3) melts at pressures up to 52.5 GPa. Our FPMD calculations reproduce the ultralow viscosity measured by experiments and confirm the ideal liquid behavior of calcium carbonate melts at pressures below 11.2 GPa. However, calcium carbonate melts are characterized by a pronounced nonideal liquid behavior at pressures above 11.2 GPa, arising from (1) the temporal formation of small carbonate clusters and (2) increased interactions between Ca2+ and CO32- ions. It is found that the Stokes Einstein equation relating the viscosity with the diffusion coefficients still holds at high pressure provided that a suitable effective particle size can be chosen.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 45 条
[21]   Ultralow viscosity of carbonate melts at high pressures [J].
Kono, Yoshio ;
Kenney-Benson, Curtis ;
Hummer, Daniel ;
Ohfuji, Hiroaki ;
Park, Changyong ;
Shen, Guoyin ;
Wang, Yanbin ;
Kavner, Abby ;
Manning, Craig E. .
NATURE COMMUNICATIONS, 2014, 5
[22]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[23]   NORM-CONSERVING AND ULTRASOFT PSEUDOPOTENTIALS FOR FIRST-ROW AND TRANSITION-ELEMENTS [J].
KRESSE, G ;
HAFNER, J .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (40) :8245-8257
[24]   Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle [J].
Li, Zeyu ;
Li, Jie ;
Lange, Rebecca ;
Liu, Jiachao ;
Mintzer, Burkhard .
EARTH AND PLANETARY SCIENCE LETTERS, 2017, 457 :395-402
[25]   Crossover from melting to dissociation of CO2 under pressure: Implications for the lower mantle [J].
Litasov, Konstantin D. ;
Goncharov, Alexander F. ;
Hemley, Russell J. .
EARTH AND PLANETARY SCIENCE LETTERS, 2011, 309 (3-4) :318-323
[26]   New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component [J].
Liu, Q ;
Lange, RA .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 2003, 146 (03) :370-381
[27]  
MARKGRAF SA, 1985, AM MINERAL, V70, P590
[28]  
Marx D., 2009, AB INITIO MOL DYNAMI, P1, DOI 10.1017/CBO9780511609633
[29]   Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation [J].
Mason, TG .
RHEOLOGICA ACTA, 2000, 39 (04) :371-378
[30]   Electronic and optical properties of CaCO3 calcite, and excitons in Si@ CaCO3 and CaCO3@ SiO2 core-shell quantum dots [J].
Medeiros, S. K. ;
Albuquerque, E. L. ;
Maia, F. F., Jr. ;
Caetano, E. W. S. ;
Freire, V. N. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (18) :5747-5752