Structures and Transport Properties of CaCO3 Melts under Earth's Mantle Conditions

被引:19
作者
Du, Xiangpo [1 ]
Wu, Min [2 ]
Tse, John S. [1 ,3 ]
Pan, Yuanming [4 ]
机构
[1] Jilin Univ, Key State Lab Superhard Mat, Changchun 130012, Jilin, Peoples R China
[2] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[4] Univ Saskatchewan, Dept Geol Sci, Saskatoon, SK S7N 5E2, Canada
来源
ACS EARTH AND SPACE CHEMISTRY | 2018年 / 2卷 / 01期
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
carbonate; Earth's mantle; viscosity; melt; molecular dynamics; CALCIUM-CARBONATE; ULTRASOFT PSEUDOPOTENTIALS; OPTICAL-PROPERTIES; TRANSFORMATION; PRESSURES; ARAGONITE; VISCOSITY; MODEL;
D O I
10.1021/acsearthspacechem.7b00100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbonatitic and carbonated silicate melts generated from melting in the mantle are the chief agents for liberating carbon from the solid Earth and exert important controls on Earth's deep carbon cycle. However, significant gaps in our knowledge about the carbonatitic melts under conditions pertinent to Earth's deep interior remain due to experimental challenges. Here, we report on a first-principles molecular dynamics (FPMD) calculation of calcium carbonate (CaCO3) melts at pressures up to 52.5 GPa. Our FPMD calculations reproduce the ultralow viscosity measured by experiments and confirm the ideal liquid behavior of calcium carbonate melts at pressures below 11.2 GPa. However, calcium carbonate melts are characterized by a pronounced nonideal liquid behavior at pressures above 11.2 GPa, arising from (1) the temporal formation of small carbonate clusters and (2) increased interactions between Ca2+ and CO32- ions. It is found that the Stokes Einstein equation relating the viscosity with the diffusion coefficients still holds at high pressure provided that a suitable effective particle size can be chosen.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 45 条
  • [1] First-principles calculation of transport coefficients
    Alfè, D
    Gillan, MJ
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (23) : 5161 - 5164
  • [2] TEMPERATURE DEPENDENCE OF THE STRUCTURAL PARAMETERS IN THE TRANSFORMATION OF ARAGONITE TO CALCITE, AS DETERMINED FROM IN SITU SYNCHROTRON POWDER X-RAY-DIFFRACTION DATA
    Antao, Sytle M.
    Hassan, Ishmael
    [J]. CANADIAN MINERALOGIST, 2010, 48 (05) : 1225 - 1236
  • [3] Viscosity and viscosity anomalies of model silicates and magmas: A numerical investigation
    Bauchy, M.
    Guillot, B.
    Micoulaut, M.
    Sator, N.
    [J]. CHEMICAL GEOLOGY, 2013, 346 : 47 - 56
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] First-principles calculations of structural, electronic, optical and elastic properties of magnesite MgCO3 and calcite CaCO3
    Brik, M. G.
    [J]. PHYSICA B-CONDENSED MATTER, 2011, 406 (04) : 1004 - 1012
  • [6] UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY
    CAR, R
    PARRINELLO, M
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (22) : 2471 - 2474
  • [7] The vibrational spectrum of CaCO3 aragonite: A combined experimental and quantum-mechanical investigation
    Carteret, Cedric
    De la Pierre, Marco
    Dossot, Manuel
    Pascale, Fabien
    Erba, Alessandro
    Dovesi, Roberto
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (01)
  • [8] Corradini D, 2016, NAT CHEM, V8, P454, DOI [10.1038/nchem.2450, 10.1038/NCHEM.2450]
  • [9] DFT Calculations with van der Waals Interactions of Hydrated Calcium Carbonate Crystals CaCO3•(H2O, 6H2O): Structural, Electronic, Optical, and Vibrational Properties
    Costa, Stefane N.
    Freire, Valder N.
    Caetano, Ewerton W. S.
    Maia, Francisco F., Jr.
    Barboza, Carlos A.
    Fulco, Umberto L.
    Albuquerque, Eudenilson L.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2016, 120 (28) : 5752 - 5765
  • [10] Melting in the Earth's deep upper mantle caused by carbon dioxide
    Dasgupta, R
    Hirschmann, MM
    [J]. NATURE, 2006, 440 (7084) : 659 - 662