Measuring Piezoelectric Output-Fact or Friction?

被引:92
作者
Sutka, Andris [1 ]
Sherrell, Peter C. [2 ]
Shepelin, Nick A. [2 ]
Lapcinskis, Linards [1 ]
Malnieks, Kaspars [1 ]
Ellis, Amanda V. [2 ]
机构
[1] Riga Tech Univ, Fac Mat Sci & Appl Chem, Res Lab Funct Mat Technol, Paula Valdena 3-7, LV-1048 Riga, Latvia
[2] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
energy harvesting; measurement techniques; piezoelectricity; polymer composites; triboelectricity; THIN-FILM; HIGH-PERFORMANCE; TRIBOELECTRIC NANOGENERATORS; ENERGY; GENERATORS; POLARIZATION; COMPOSITES; EFFICIENT; HARVESTER; MATRIX;
D O I
10.1002/adma.202002979
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Piezoelectric polymers are emerging as exceptionally promising materials for energy harvesting. While the theoretical figures of merit for piezoelectric polymers are comparable to ceramics, the measurement techniques need to be retrofitted to account for the different mechanical properties of the softer polymeric materials. Here, how contact electrification, including friction and contact separation, is often mistaken for piezoelectric charge is examined, and a perspective for how to separate these effects is provided. The state of the literature is assessed, and recommendations are made for clear and simple guidelines in reporting, for both sample geometry and testing methods, to enable accurate determination of piezoelectric figures of merit in polymers. Such improvements will allow an understanding of what types of material manipulation are required in order to enhance the piezoelectric output from polymers and enable the next generation of polymer energy harvester design.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Integrated Triboelectric Nanogenerators in the Era of the Internet of Things [J].
Ahmed, Abdelsalam ;
Hassan, Islam ;
El-Kady, Maher F. ;
Radhi, Ali ;
Jeong, Chang Kyu ;
Selvaganapathy, Ponnambalam Ravi ;
Zu, Jean ;
Ren, Shenqiang ;
Wang, Qing ;
Kaner, Richard B. .
ADVANCED SCIENCE, 2019, 6 (24)
[2]   Pyroelectric materials and devices for energy harvesting applications [J].
Bowen, C. R. ;
Taylor, J. ;
LeBoulbar, E. ;
Zabek, D. ;
Chauhan, A. ;
Vaish, R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (12) :3836-3856
[3]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137
[4]   A wave-shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers [J].
Chen, Xuexian ;
Han, Mengdi ;
Chen, Haotian ;
Cheng, Xiaoliang ;
Song, Yu ;
Su, Zongming ;
Jiang, Yonggang ;
Zhang, Haixia .
NANOSCALE, 2017, 9 (03) :1263-1270
[5]   Polymer-based nanopiezoelectric generators for energy harvesting applications [J].
Crossley, S. ;
Whiter, R. A. ;
Kar-Narayan, S. .
MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (13A) :1613-1624
[6]   Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self-Powered Wearable Electronics [J].
Dahiya, Abhishek S. ;
Morini, Francois ;
Boubenia, Sarah ;
Nadaud, Kevin ;
Alquier, Daniel ;
Poulin-Vittrant, Guylaine .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (02)
[7]   Strain behavior of thin film PbZr0.3Ti0.7O3 (30/70) examined through piezoforce microscopy [J].
Dunn, S .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (09) :5964-5968
[8]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[9]   PIEZOELECTRICITY IN POLYMERS AND BIOLOGICAL MATERIALS [J].
FUKADA, E .
ULTRASONICS, 1968, 6 (04) :229-&
[10]   Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode [J].
Gu, Long ;
Cui, Nuanyang ;
Cheng, Li ;
Xu, Qi ;
Bai, Suo ;
Yuan, Miaomiao ;
Wu, Weiwei ;
Liu, Jinmei ;
Zhao, Yong ;
Ma, Fei ;
Qin, Yong ;
Wang, Zhong Lin .
NANO LETTERS, 2013, 13 (01) :91-94