Residual Local Feature Network for Efficient Super-Resolution

被引:131
|
作者
Kong, Fangyuan [1 ]
Li, Mingxi [1 ]
Liu, Songwei [1 ]
Liu, Ding [1 ]
He, Jingwen [1 ]
Bai, Yang [1 ]
Chen, Fangmin [1 ]
Fu, Lean [1 ]
机构
[1] ByteDance Inc, Beijing, Peoples R China
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1109/CVPRW56347.2022.00092
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning based approaches has achieved great performance in single image super-resolution (SISR). However, recent advances in efficient super-resolution focus on reducing the number of parameters and FLOPs, and they aggregate more powerful features by improving feature utilization through complex layer connection strategies. These structures may not be necessary to achieve higher running speed, which makes them difficult to be deployed to resource-constrained devices. In this work, we propose a novel Residual Local Feature Network (RLFN). The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation, which achieves a good trade-off between model performance and inference time. Moreover, we revisit the popular contrastive loss and observe that the selection of intermediate features of its feature extractor has great influence on the performance. Besides, we propose a novel multi-stage warm-start training strategy. In each stage, the pre-trained weights from previous stages are utilized to improve the model performance. Combined with the improved contrastive loss and training strategy, the proposed RLFN outperforms all the state-of-the-art efficient image SR models in terms of runtime while maintaining both PSNR and SSIM for SR. In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge. Code will be available at https://github.com/fyan111/RLFN.
引用
收藏
页码:765 / 775
页数:11
相关论文
共 50 条
  • [31] A local and global feature fusion network for Super-Resolution reconstruction of turbulent flows
    Gong, Zhicheng
    Xu, Zili
    Zhao, Shizhi
    Cheng, Lu
    Qu, Jiangji
    Fang, Yu
    PHYSICS OF FLUIDS, 2024, 36 (12)
  • [32] Video Super-Resolution Using a Grouped Residual in Residual Network
    Ashoori, MohammadHossein
    Amini, Arash
    arXiv, 2023,
  • [33] Efficient masked feature and group attention network for stereo image super-resolution
    Song, Jianwen
    Sowmya, Arcot
    Kato, Jien
    Sun, Changming
    IMAGE AND VISION COMPUTING, 2024, 151
  • [34] Dilated-convolutional feature modulation network for efficient image super-resolution
    Lijun Wu
    Shan Li
    Zhicong Chen
    Journal of Real-Time Image Processing, 2025, 22 (2)
  • [35] RFCNet: Remote Sensing Image Super-Resolution Using Residual Feature Calibration Network
    Xue, Yuan
    Li, Liangliang
    Wang, Zheyuan
    Jiang, Chenchen
    Liu, Minqin
    Wang, Jiawen
    Sun, Kaipeng
    Ma, Hongbing
    TSINGHUA SCIENCE AND TECHNOLOGY, 2023, 28 (03): : 475 - 485
  • [36] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123
  • [37] A Multi-Branch Feature Extraction Residual Network for Lightweight Image Super-Resolution
    Liu, Chunying
    Wan, Xujie
    Gao, Guangwei
    MATHEMATICS, 2024, 12 (17)
  • [38] Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution
    Yang, Kun
    Zhao, Lei
    Wang, Xianghui
    Zhang, Mingyang
    Xue, Linyan
    Liu, Shuang
    Liu, Kun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 75 (03): : 5159 - 5176
  • [39] Multi-Residual Feature Fusion Network for lightweight Single Image Super-Resolution
    Qin, Jiayi
    He, Zheng
    Yan, Binyu
    Jeon, Gwanggil
    Yang, Xiaomin
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1511 - 1518
  • [40] Multi-scale feature fusion residual network for Single Image Super-Resolution
    Qin, Jinghui
    Huang, Yongjie
    Wen, Wushao
    NEUROCOMPUTING, 2020, 379 (379) : 334 - 342