Residual Local Feature Network for Efficient Super-Resolution

被引:131
|
作者
Kong, Fangyuan [1 ]
Li, Mingxi [1 ]
Liu, Songwei [1 ]
Liu, Ding [1 ]
He, Jingwen [1 ]
Bai, Yang [1 ]
Chen, Fangmin [1 ]
Fu, Lean [1 ]
机构
[1] ByteDance Inc, Beijing, Peoples R China
关键词
IMAGE SUPERRESOLUTION;
D O I
10.1109/CVPRW56347.2022.00092
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning based approaches has achieved great performance in single image super-resolution (SISR). However, recent advances in efficient super-resolution focus on reducing the number of parameters and FLOPs, and they aggregate more powerful features by improving feature utilization through complex layer connection strategies. These structures may not be necessary to achieve higher running speed, which makes them difficult to be deployed to resource-constrained devices. In this work, we propose a novel Residual Local Feature Network (RLFN). The main idea is using three convolutional layers for residual local feature learning to simplify feature aggregation, which achieves a good trade-off between model performance and inference time. Moreover, we revisit the popular contrastive loss and observe that the selection of intermediate features of its feature extractor has great influence on the performance. Besides, we propose a novel multi-stage warm-start training strategy. In each stage, the pre-trained weights from previous stages are utilized to improve the model performance. Combined with the improved contrastive loss and training strategy, the proposed RLFN outperforms all the state-of-the-art efficient image SR models in terms of runtime while maintaining both PSNR and SSIM for SR. In addition, we won the first place in the runtime track of the NTIRE 2022 efficient super-resolution challenge. Code will be available at https://github.com/fyan111/RLFN.
引用
收藏
页码:765 / 775
页数:11
相关论文
共 50 条
  • [21] An efficient feature reuse distillation network for lightweight image super-resolution
    Liu, Chunying
    Gao, Guangwei
    Wu, Fei
    Guo, Zhenhua
    Yu, Yi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 249
  • [22] Efficient Attention Fusion Feature Extraction Network for Image Super-Resolution
    Wang, Tuoran
    Cheng, Na
    Ding, Shijia
    Wang, Hongyu
    ACM International Conference Proceeding Series, 2023, : 35 - 44
  • [23] Feature distillation network for efficient super-resolution with vast receptive field
    Zhang, Yanfeng
    Tan, Wenan
    Mao, Wenyi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (02)
  • [24] Local feature extraction for image super-resolution
    Baboulaz, Loic
    Dragotti, Pier Luigi
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2653 - 2656
  • [25] Gradual deep residual network for super-resolution
    Song, Zhaoyang
    Zhao, Xiaoqiang
    Jiang, Hongmei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (07) : 9765 - 9778
  • [26] Residual Dense Network for Image Super-Resolution
    Zhang, Yulun
    Tian, Yapeng
    Kong, Yu
    Zhong, Bineng
    Fu, Yun
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 2472 - 2481
  • [27] Gradual deep residual network for super-resolution
    Zhaoyang Song
    Xiaoqiang Zhao
    Hongmei Jiang
    Multimedia Tools and Applications, 2021, 80 : 9765 - 9778
  • [28] NON-LOCAL HIERARCHICAL RESIDUAL NETWORK FOR SINGLE IMAGE SUPER-RESOLUTION
    Bai, Furui
    Lu, Wen
    Zha, Lin
    Sun, Xiaopeng
    Guan, Ruoxuan
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2821 - 2825
  • [29] A FAST AND EFFICIENT SUPER-RESOLUTION NETWORK USING HIERARCHICAL DENSE RESIDUAL LEARNING
    Vinh Van Duong
    Thuc Nguyen Huu
    Yim, Jonghoon
    Jeon, Byeungwoo
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1809 - 1813
  • [30] Residual multi-branch distillation network for efficient image super-resolution
    Gao, Xiang
    Zhou, Ying
    Wu, Sining
    Wu, Xinrong
    Wang, Fan
    Hu, Xiaopeng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (30) : 75217 - 75241