Approximate Quantum Error Correction

被引:94
|
作者
Schumacher, Benjamin [1 ]
Westmoreland, Michael D. [2 ]
机构
[1] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA
[2] Denison Univ, Dept Math Sci, Granville, OH 43023 USA
关键词
quantum error correction;
D O I
10.1023/A:1019653202562
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The errors that arise in a quantum channel can be corrected perfectly if and only if the channel does not decrease the coherent information of the input state. We show that, if the loss of coherent information is small, then approximate quantum error correction is possible.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [1] Approximate Quantum Error Correction
    Benjamin Schumacher
    Michael D. Westmoreland
    Quantum Information Processing, 2002, 1 : 5 - 12
  • [2] An entropic analysis of approximate quantum error correction
    Cafaro, Carlo
    van Loock, Peter
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 404 : 34 - 46
  • [3] Approaching the Quantum Singleton Bound with Approximate Error Correction
    Bergamaschi, Thiago
    Golowich, Louis
    Gunn, Sam
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 1507 - 1516
  • [4] Quantum interleaver: Quantum error correction for burst error
    Kawabata, S
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (11) : 3540 - 3543
  • [5] Continuous quantum error correction
    Sarovar, M
    Milburn, GJ
    FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS III, 2005, 5846 : 158 - 166
  • [6] On the Probabilistic Quantum Error Correction
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (07) : 4620 - 4640
  • [7] Quantum memories and error correction
    Wootton, James R.
    JOURNAL OF MODERN OPTICS, 2012, 59 (20) : 1717 - 1738
  • [8] Quantum information: Qubits and quantum error correction
    Bennett, CH
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (02) : 153 - 176
  • [9] Quantum Information: Qubits and Quantum Error Correction
    Charles H. Bennett
    International Journal of Theoretical Physics, 2003, 42 : 153 - 176
  • [10] Key ideas in quantum error correction
    Raussendorf, Robert
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1975): : 4541 - 4565