Topological dynamics of 2D cellular automata

被引:4
|
作者
Sablik, Mathieu [1 ,2 ]
Theyssier, Guillaume [3 ]
机构
[1] Ecole Normale Super Lyon, CNRS, UMR 5669, UMPA, 46 Allee Italie, F-69364 Lyon, France
[2] Univ Aix Marseille 1, CMI, CNRS, LATP,UMR 6632, F-13453 Marseille, France
[3] Universite Savoie, CNRS, LAMA, UMR 5127, F-73376 Le Bourget Du Lac, France
来源
LOGIC AND THEORY OF ALGORITHMS | 2008年 / 5028卷
关键词
D O I
10.1007/978-3-540-69407-6_56
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Topological dynamics of cellular automata (CA), inherited from classical dynamical systems theory, has been essentially studied in dimension 1. This paper focuses on 2D CA and aims at showing that the situation is different and more complex. The main results are the existence of non sensitive CA without equicontinuous points, the nonrecursivity of sensitivity constants and the existence of CA having only non-recursive equicontinuous points. They all show a difference between the 1D and the 2D case. Thanks to these new constructions, we also extend undecidability results concerning topological classification previously obtained in the ID case.
引用
收藏
页码:523 / +
页数:2
相关论文
共 50 条
  • [31] Progresses in the analysis of Stochastic 2D cellular automata: A study of asynchronous 2D minority
    Regnault, Damien
    Schabanel, Nicolas
    Thierry, Eric
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2007, PROCEEDINGS, 2007, 4708 : 320 - +
  • [32] Topological definitions of chaos applied to cellular automata dynamics
    Cattaneo, G
    Margara, L
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1998, 1998, 1450 : 816 - 824
  • [33] Topological Perturbations and Their Effect on the Dynamics of Totalistic Cellular Automata
    Baetens, Jan M.
    De Baets, Bernard
    CELLULAR AUTOMATA, ACRI 2012, 2012, 7495 : 1 - 10
  • [34] Investigating topological chaos by elementary cellular automata dynamics
    Cattaneo, G
    Finelli, M
    Margara, L
    THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 219 - 241
  • [35] The topological structure of 2D disordered cellular systems
    Ohlenbusch, HM
    Aste, T
    Dubertret, B
    Rivier, N
    EUROPEAN PHYSICAL JOURNAL B, 1998, 2 (02): : 211 - 220
  • [36] The topological structure of 2D disordered cellular systems
    H.M. Ohlenbusch
    T. Aste
    B. Dubertret
    N. Rivier
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 2 : 211 - 220
  • [37] Topological structure of 2D disordered cellular systems
    Universite Louis Pasteur, Strasbourg, France
    Eur Phys J B, 2 (211-220):
  • [38] TOPOLOGICAL MODELS OF 2D FRACTAL CELLULAR STRUCTURES
    LECAER, G
    DELANNAY, R
    JOURNAL DE PHYSIQUE I, 1995, 5 (11): : 1417 - 1429
  • [39] Topological characterization of 2D finite cellular systems
    Reti, T
    Boroczky, K
    MATERIALS SCIENCE, TESTING AND INFORMATICS, 2003, 414-4 : 471 - 481
  • [40] Characterization of 2D Hybrid Cellular Automata with Periodic Boundary
    Acar, E.
    Uguz, S.
    Akin, H.
    ACTA PHYSICA POLONICA A, 2017, 131 (03) : 432 - 436