Algebraic structures with unbounded Chern numbers

被引:4
作者
Schreieder, Stefan [1 ]
Tasin, Luca [1 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
DIFFEOMORPHISM TYPES; MANIFOLDS;
D O I
10.1112/jtopol/jtw011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine all Chern numbers of smooth complex projective varieties of dimension at least 4 which are determined up to finite ambiguity by the underlying smooth manifold. We also give an upper bound on the dimension of the space of linear combinations of Chern numbers with that property and prove its optimality in dimension 4.
引用
收藏
页码:849 / 860
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1968, Note on Cobordism Theory
[2]  
[Anonymous], 1994, ERGEBNISSE MATH IHRE
[3]  
Cascini P., 2014, ARXIV14121686
[4]  
Dolgachev I., 2010, C I M E SUMMER SCH, V76, P97
[5]  
FRIEDMAN R, 1988, J DIFFER GEOM, V27, P297
[6]   ALGEBRAIC-SURFACES AND 4-MANIFOLDS - SOME CONJECTURES AND SPECULATIONS [J].
FRIEDMAN, R ;
MORGAN, JW .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (01) :1-19
[7]   LE THEOREME DE BARDEN-MAZUR-STALLINGS [J].
KERVAIRE, MA .
COMMENTARII MATHEMATICI HELVETICI, 1965, 40 (01) :31-&
[8]  
Kollár J, 1998, PROG MATH, V168, P255
[9]   The Hodge ring of Kahler manifolds [J].
Kotschick, D. ;
Schreieder, S. .
COMPOSITIO MATHEMATICA, 2013, 149 (04) :637-657
[10]   Topologically invariant Chern numbers of projective varieties [J].
Kotschick, D. .
ADVANCES IN MATHEMATICS, 2012, 229 (02) :1300-1312