Engineering the Biointerface of Electrospun 3D Scaffolds with Functionalized Polymer Brushes for Enhanced Cell Binding

被引:16
作者
Duque-Sanchez, Lina [1 ,2 ,3 ]
Brack, Narelle [1 ,2 ]
Postma, Almar [3 ]
Meagher, Laurence [4 ,5 ]
Pigram, Paul J. [1 ,2 ]
机构
[1] La Trobe Univ, Ctr Mat & Surface Sci, Melbourne, Vic 3086, Australia
[2] La Trobe Univ, Dept Chem & Phys, Melbourne, Vic 3086, Australia
[3] CSIRO Mfg, Bayview Ave, Clayton, Vic 3168, Australia
[4] Monash Univ, Monash Inst Med Engn, Clayton, Vic 3800, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
关键词
TRANSFER RADICAL POLYMERIZATION; RGD PEPTIDES; ADHESION; BIOMATERIALS; SURFACES; PROTEIN; FABRICATION; ADSORPTION; GRADIENTS; RESIST;
D O I
10.1021/acs.biomac.8b01427
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Electrospun ultrafine fibers prepared using a blend of poly(lactide-co-glycolide) (PLGA) and bromine terminated poly(L-lactide) (PLA-Br), were surface modified using surface-initiated (SI) Cu(0) mediated polymerization. Copolymers based on N-acryloxysuccinimide (NAS) and a low fouling monomer (either N,N-dimethylacrylamide (DMA), N-(2-hydroxypropyl)acrylamide (HPA), or N-acryloylmorpholine (NAM)) were grafted from the fiber surface to impart surface functionality and to reduce nonspecific protein adsorption. Inclusion of the functional NAS monomer facilitated the conjugation of a nonbioactive cyclic RAD peptide and a bioactive cyclic RGD peptide, the latter expected to facilitate cell adhesion through its affinity for the alpha(v),beta(3) integrin receptor. A detailed analysis of the surface of the electrospun fiber scaffolds in nongrafted form compared to the surface functionalized state is presented. Characteristic amino acid peaks are observed for both conjugated RGD and RAD peptides. Cell culture experiments confirmed cell specific attachment mediated through the presence of the bioactive RGD peptide mainly at high surface density.
引用
收藏
页码:813 / 825
页数:13
相关论文
共 57 条
[1]   Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions [J].
Ameringer, Thomas ;
Ercole, Francesca ;
Tsang, Kelly M. ;
Coad, Bryan R. ;
Hou, Xueliang ;
Rodda, Andrew ;
Nisbet, David R. ;
Thissen, Helmut ;
Evans, Richard A. ;
Meagher, Laurence ;
Forsythe, John S. .
BIOINTERPHASES, 2013, 8 :1-11
[2]   Polymer coatings that display specific biological signals while preventing nonspecific interactions [J].
Ameringer, Thomas ;
Fransen, Peter ;
Bean, Penny ;
Johnson, Graham ;
Pereira, Suzanne ;
Evans, Richard A. ;
Thissen, Helmut ;
Meagher, Laurence .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (02) :370-379
[3]   Cu(0)-mediated living radical polymerization: recent highlights and applications; a perspective [J].
Anastasaki, Athina ;
Nikolaou, Vasiliki ;
Haddleton, David M. .
POLYMER CHEMISTRY, 2016, 7 (05) :1002-1026
[4]   Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis [J].
Anastasaki, Athina ;
Nikolaou, Vasiliki ;
Nurumbetov, Gabit ;
Wilson, Paul ;
Kempe, Kristian ;
Quinn, John F. ;
Davis, Thomas P. ;
Whittaker, Michael R. ;
Haddleton, David M. .
CHEMICAL REVIEWS, 2016, 116 (03) :835-877
[5]  
ANJANEYULU PSR, 1987, INT J PEPT PROT RES, V30, P117
[6]  
Beamson G., 1992, HIGH RESOLUTION XPS, DOI DOI 10.1002/ADMA.19930051035
[7]   Advantages of RGD peptides for directing cell association with biomaterials [J].
Bellis, Susan L. .
BIOMATERIALS, 2011, 32 (18) :4205-4210
[8]   Surface Characterization of Polymer Blends by XPS and ToF-SIMS [J].
Chan, Chi Ming ;
Weng, Lu-Tao .
MATERIALS, 2016, 9 (08)
[9]   Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials [J].
Chen, Shenfu ;
Li, Lingyan ;
Zhao, Chao ;
Zheng, Jie .
POLYMER, 2010, 51 (23) :5283-5293
[10]   X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and principal component analysis of the hydrolysis, regeneration, and reactivity of N-hydroxysuccinimide-containing organic thin films [J].
Cheng, Fang ;
Gamble, Lara J. ;
Grainger, David W. ;
Castner, David G. .
ANALYTICAL CHEMISTRY, 2007, 79 (22) :8781-8788