A ranking algorithm for bi-objective quadratic fractional integer programming problems

被引:4
作者
Sharma, Vikas [1 ]
Dahiya, Kalpana [2 ]
Verma, Vanita [3 ]
机构
[1] Thapar Univ, Sch Math, Patiala, Punjab, India
[2] Panjab Univ, UIET, Chandigarh, India
[3] Panjab Univ, Dept Math, Chandigarh, India
关键词
Fractional programming; multiobjective programming; integer programming; NON-DOMINATED VECTORS; MULTIOBJECTIVE INTEGER; LINEAR-PROGRAMS; EFFICIENT SET; OPTIMIZATION; POINTS;
D O I
10.1080/02331934.2017.1339703
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An algorithm to solve bi-objective quadratic fractional integer programming problems is presented in this paper. The algorithm uses epsilon-scalarization technique and a ranking approach of the integer feasible solution to find all nondominated points. In order to avoid solving nonlinear integer programming problems during this ranking scheme, the existence of a linear or a linear fractional function is established, which acts as a lower bound on the values of first objective function of the biobjective problem over the entire feasible set Numerical examples are also presented in support of the theory.
引用
收藏
页码:1913 / 1929
页数:17
相关论文
共 33 条
[1]   Optimizing a linear function over an integer efficient set [J].
Abbas, Moncef ;
Chaabane, Djamal .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 174 (02) :1140-1161
[2]  
Al-Homidan S, 2012, VECTOR OPTIM, P221, DOI 10.1007/978-3-642-21114-0_7
[3]   A review of interactive methods for multiobjective integer and mixed-integer programming [J].
Alves, Maria Joao ;
Climaco, Joao .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 180 (01) :99-115
[4]   AN ALGORITHM FOR THE RANKING OF SHORTEST PATHS [J].
AZEVEDO, JA ;
COSTA, MEOS ;
MADEIRA, JJERS ;
MARTINS, EQV .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 69 (01) :97-106
[5]   The controlled estimation method in the multiobjective linear fractional problem [J].
Caballero, R ;
Hernández, M .
COMPUTERS & OPERATIONS RESEARCH, 2004, 31 (11) :1821-1832
[6]  
Chankong V., 2008, MULTIOBJECTIVE DECIS
[7]  
CLIMACO JCN, 1982, EUR J OPER RES, V11, P399, DOI 10.1016/0377-2217(82)90205-3
[8]  
Dahiya K, 2003, P APORS, V1, P19
[9]  
DIAZ JA, 1978, EKON MAT OBZ, V14, P267
[10]   A survey and annotated bibliography of multiobjective combinatorial optimization [J].
Ehrgott M. ;
Gandibleux X. .
OR-Spektrum, 2000, 22 (4) :425-460