Immune modulating nanoparticles depleting tumor-associated macrophages to enhance immune checkpoint blockade therapy

被引:13
作者
Zheng Chunxiong [1 ,2 ]
Zhao Xinzhi [1 ]
Wang Ying [1 ]
Zhao Yu [1 ]
Zheng Yadan [1 ,3 ]
Zhang Zhanzhan [1 ]
Liu Qi [1 ]
Liu Yang [1 ,4 ]
Shi Linqi [1 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Funct Polymer Mat, State Key Lab Med Chem Biol,Minist Educ, Tianjin 300071, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 3, Ctr Nanomed, Lab Biomat & Translat Med, Guangzhou 510630, Peoples R China
[3] Northeast Agr Univ, Coll Vet Med, Harbin 150030, Peoples R China
[4] Anhui Med Univ, Sch Pharm, Hefei 230032, Peoples R China
关键词
Immune modulating nanoparticle; Spatial delivery; Tumor-associated macrophage; Tumor microenvironment; Immune checkpoint therapy; CANCER; RESISTANCE; INHIBITION; IPILIMUMAB; EXPRESSION; ANTIBODY; BINDARIT; PHASE-2; BINDING; GROWTH;
D O I
10.1016/j.cej.2022.134779
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Targeting the tumor-associated macrophages (TAMs) with combinational drugs is a promising strategy to improve immune checkpoint blocking therapies. To optimize the synergetic effect of TAM-depletion, it is required for the delivery system to deliver multiple therapeutic drugs to their corresponding action-sites. Herein, we design an immune modulating nanoparticle (IMNP) that can achieve a spatial control of the release sites of the drugs to synergistically deplete TAMs. IMNP has a core-shell structure in which the shell disassembles in acidic tumor microenvironment, resulting in the release of bindarit into the intercellular space to inhibit the recruitment of monocytes and exposing the core nCS(ALN)-Man to trigger the apoptosis of TAMs. With this unique feature, systemic administration of IMNP to tumor-bearing mice effectively eliminated TAMs and altered the immunosuppressing tumor environment, which significantly improved the anti-tumor efficacy of anti-PD-1. Considering the antitumor efficacy of chemotherapy, irradiation and vascular-targeted therapies is also coun-teracted by TAMs, IMNP could be further developed in combination with these therapies for cancer treatment, implying the potential as a general application to improve the efficacy of cancer therapies.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Current Strategies to Target Tumor-Associated-Macrophages to Improve Anti-Tumor Immune Responses [J].
Anfray, Clement ;
Ummarino, Aldo ;
Torres Andon, Fernando ;
Allavena, Paola .
CELLS, 2020, 9 (01)
[2]   A monosaccharide-modified peptide phage library for screening of ligands to carbohydrate-binding proteins [J].
Arai, Kanako ;
Tsutsumi, Hiroshi ;
Mihara, Hisakazu .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2013, 23 (17) :4940-4943
[3]   Keeping Tumors in Check: A Mechanistic Review of Clinical Response and Resistance to Immune Checkpoint Blockade in Cancer [J].
Borcherding, Nicholas ;
Kolb, Ryan ;
Gullicksrud, Jodi ;
Vikas, Praveen ;
Zhu, Yuwen ;
Zhang, Weizhou .
JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (14) :2014-2029
[4]   CSF-1R-Dependent Lethal Hepatotoxicity When Agonistic CD40 Antibody Is Given before but Not after Chemotherapy [J].
Byrne, Katelyn T. ;
Leisenring, Nathan H. ;
Bajor, David L. ;
Vonderheide, Robert H. .
JOURNAL OF IMMUNOLOGY, 2016, 197 (01) :179-187
[5]   Targeting Tumor-Associated Macrophages as a Potential Strategy to Enhance the Response to Immune Checkpoint Inhibitors [J].
Cassetta, Luca ;
Kitamura, Takanori .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2018, 6
[6]   Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment [J].
Chanmee, Theerawut ;
Ontong, Pawared ;
Konno, Kenjiro ;
Itano, Naoki .
CANCERS, 2014, 6 (03) :1670-1690
[7]   Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells [J].
De Henau, Olivier ;
Rausch, Matthew ;
Winkler, David ;
Campesato, Luis Felipe ;
Liu, Cailian ;
Hirschhorn-Cymerman, Daniel ;
Budhu, Sadna ;
Ghosh, Arnab ;
Pink, Melissa ;
Tchaicha, Jeremy ;
Douglas, Mark ;
Tibbitts, Thomas ;
Sharma, Sujata ;
Proctor, Jennifer ;
Kosmider, Nicole ;
White, Kerry ;
Stern, Howard ;
Soglia, John ;
Adams, Julian ;
Palombella, Vito J. ;
McGovern, Karen ;
Kutok, Jeffery L. ;
Wolchok, Jedd D. ;
Merghoub, Taha .
NATURE, 2016, 539 (7629) :443-447
[8]   Macrophage Expression of Hypoxia-Inducible Factor-1α Suppresses T-Cell Function and Promotes Tumor Progression [J].
Doedens, Andrew L. ;
Stockmann, Christian ;
Rubinstein, Mark P. ;
Liao, Debbie ;
Zhang, Na ;
DeNardo, David G. ;
Coussens, Lisa M. ;
Karin, Michael ;
Goldrath, Ananda W. ;
Johnson, Randall S. .
CANCER RESEARCH, 2010, 70 (19) :7465-7475
[9]   Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial [J].
El-Khoueiry, Anthony B. ;
Sangro, Bruno ;
Yau, Thomas ;
Crocenzi, Todd S. ;
Kudo, Masatoshi ;
Hsu, Chiun ;
Kim, Tae-You ;
Choo, Su-Pin ;
Trojan, Jorg ;
Welling, Theodore H., III ;
Meyer, Tim ;
Kang, Yoon-Koo ;
Yeo, Winnie ;
Chopra, Akhil ;
Anderson, Jeffrey ;
dela Cruz, Christine ;
Lang, Lixin ;
Neely, Jaclyn ;
Tang, Hao ;
Dastani, Homa B. ;
Melero, Ignacio .
LANCET, 2017, 389 (10088) :2492-2502
[10]   A carbohydrate-antioxidant hybrid polymer reduces oxidative damage in spermatozoa and enhances fertility [J].
Fleming, C ;
Maldjian, A ;
Da Costa, D ;
Rullay, AK ;
Haddleton, DM ;
John, JS ;
Penny, P ;
Noble, RC ;
Cameron, NR ;
Davis, BG .
NATURE CHEMICAL BIOLOGY, 2005, 1 (05) :270-274