First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature

被引:12
作者
Cheng, Qing-Ming [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
hypersurface with constant scalar curvature; Jacobi operator; mean curvature; first eigenvalue and principal curvatures;
D O I
10.1090/S0002-9939-08-09304-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an n-dimensional compact hypersurface with constant scalar curvature n(n-1) r, r > 1, in a unit sphere Sn+1( 1). We know that such hypersurfaces can be characterized as critical points for a variational problem of the integral integral(M) HdM of the mean curvature H. In this paper, we first study the eigenvalue of the Jacobi operator J(s) of M. We derive an optimal upper bound for the first eigenvalue of Js, and this bound is attained if and only if M is a totally umbilical and non-totally geodesic hypersurface or M is a Riemannian product S-m(c) x Sn-m(root 1-c(2)), 1 <= m <= n-1.
引用
收藏
页码:3309 / 3318
页数:10
相关论文
共 19 条
[11]   HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
CHENG, SY ;
YAU, ST .
MATHEMATISCHE ANNALEN, 1977, 225 (03) :195-204
[12]  
Hounie J, 1999, INDIANA U MATH J, V48, P867
[13]   LOCAL RIGIDITY THEOREMS FOR MINIMAL HYPERSURFACES [J].
LAWSON, HB .
ANNALS OF MATHEMATICS, 1969, 89 (01) :187-&
[14]  
Li HZ, 1996, MATH ANN, V305, P665
[15]   First stability eigenvalue characterization of Clifford hypersurfaces [J].
Perdomo, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) :3379-3384
[16]  
Reilly RC., 1973, J DIFFER GEOM, V8, P465
[17]  
ROSENBERG H, 1993, B SCI MATH, V117, P211
[18]   MINIMAL VARIETIES IN RIEMANNIAN MANIFOLDS [J].
SIMONS, J .
ANNALS OF MATHEMATICS, 1968, 88 (01) :62-&
[19]   NEW CHARACTERIZATIONS OF THE CLIFFORD TORI AND THE VERONESE SURFACE [J].
WU, CX .
ARCHIV DER MATHEMATIK, 1993, 61 (03) :277-284