First eigenvalue of a Jacobi operator of hypersurfaces with a constant scalar curvature

被引:12
作者
Cheng, Qing-Ming [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
hypersurface with constant scalar curvature; Jacobi operator; mean curvature; first eigenvalue and principal curvatures;
D O I
10.1090/S0002-9939-08-09304-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M be an n-dimensional compact hypersurface with constant scalar curvature n(n-1) r, r > 1, in a unit sphere Sn+1( 1). We know that such hypersurfaces can be characterized as critical points for a variational problem of the integral integral(M) HdM of the mean curvature H. In this paper, we first study the eigenvalue of the Jacobi operator J(s) of M. We derive an optimal upper bound for the first eigenvalue of Js, and this bound is attained if and only if M is a totally umbilical and non-totally geodesic hypersurface or M is a Riemannian product S-m(c) x Sn-m(root 1-c(2)), 1 <= m <= n-1.
引用
收藏
页码:3309 / 3318
页数:10
相关论文
共 19 条
[1]   STABLE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
ALENCAR, H ;
DOCARMO, M ;
COLARES, AG .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) :117-131
[2]   A gap theorem for hypersurfaces of the sphere with constant scalar curvature one [J].
Alencar, H ;
do Carmo, M ;
Santos, W .
COMMENTARII MATHEMATICI HELVETICI, 2002, 77 (03) :549-562
[3]   A spectral characterization of the H(r)-torus by the first stability eigenvalue [J].
Alías, LJ ;
Barros, A ;
Brasil, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :875-884
[4]   A characterization of Clifford tori with constant scalar curvature one by the first stability eigenvalue [J].
Alías, LJ ;
Brasil, A ;
Sousa, LAM .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (02) :165-175
[5]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[6]   A QUEUING NETWORK APPROACH TO THE TOPOLOGICAL OPTIMIZATION OF LINKED CLUSTER NETWORKS [J].
CHEN, YM ;
TSENG, LM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (07) :1-10
[7]   Compact hypersurfaces in a unit sphere [J].
Cheng, QM ;
Shu, SC ;
Suh, YJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :1129-1137
[8]   Compact hypersurfaces in a unit sphere with infinite fundamental group [J].
Cheng, QM .
PACIFIC JOURNAL OF MATHEMATICS, 2003, 212 (01) :49-56
[9]   Hypersurfaces in a unit sphere Sn+1(1) with constant scalar curvature [J].
Cheng, QM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :755-768
[10]   The rigidity of Clifford torus S-1(root 1/n)xS(n-1)(root n-1/n) [J].
Cheng, QM .
COMMENTARII MATHEMATICI HELVETICI, 1996, 71 (01) :60-69