Genes for two multicopper proteins required for Fe(III) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes

被引:62
作者
Holmes, Dawn E. [1 ]
Mester, Tonde [1 ]
O'Neil, Regina A. [1 ]
Perpetua, Lorrie A. [1 ]
Larrahondo, M. Juliana [1 ]
Glaven, Richard [1 ]
Sharma, Manju L. [1 ]
Ward, Joy E. [1 ]
Nevin, Kelly P. [1 ]
Lovley, Derek R. [1 ]
机构
[1] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA
来源
MICROBIOLOGY-SGM | 2008年 / 154卷
关键词
D O I
10.1099/mic.0.2007/014365-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Previous studies have shown that Geobacter sulfurreducens requires the outer-membrane, multicopper protein OmpB for Fe(III) oxide reduction. A homologue of OmpB, designated OmpC, which is 36% similar to OmpB, has been discovered in the G. sulfurreducens genome. Deletion of ompC inhibited reduction of insoluble, but not soluble Fe(Ill). Analysis of multiple Geobacter and Pelobacter genomes, as well as in situ Geobacter, indicated that genes encoding multicopper proteins are conserved in Geobacter species but are not found in Pelobacter species. Levels of ompB transcripts were similar in G. sulfurreducens at different growth rates in chemostats and during growth on a microbial fuel cell anode. In contrast, ompC transcript levels increased at higher growth rates in chemostats and with increasing current production in fuel cells. Constant levels of Geobacter ompB transcripts were detected in groundwater during a field experiment in which acetate was added to the subsurface to promote in situ uranium bioremediation. In contrast, ompC transcript levels increased during the rapid phase of growth of Geobacter species following addition of acetate to the groundwater and then rapidly declined. These results demonstrate that more than one multicopper protein is required for optimal Fe(III) oxide reduction in G. sulfurreducens and suggest that, in environmental studies, quantifying OmpB/OmpC-related genes could help alleviate the problem that Pelobacter genes may be inadvertently quantified via quantitative analysis of 16S rRNA genes. Furthermore, comparison of differential expression of ompB and ompC may provide insight into the in situ metabolic state of Geobacter species in environments of interest.
引用
收藏
页码:1422 / 1435
页数:14
相关论文
共 85 条
[1]   CHARACTERIZATION OF EXTRACELLULAR MN-2+-OXIDIZING ACTIVITY AND ISOLATION OF AN MN-2+-OXIDIZING PROTEIN FROM LEPTOTHRIX-DISCOPHORA SS-1 [J].
ADAMS, LF ;
GHIORSE, WC .
JOURNAL OF BACTERIOLOGY, 1987, 169 (03) :1279-1285
[2]   A novel Geobacteraceae-specific outer membrane protein J (OmpJ) is essential for electron transport to Fe (III) and Mn (IV) oxides in Geobacter sulfurreducens -: art. no. 41 [J].
Afkar, E ;
Reguera, G ;
Schiffer, M ;
Lovley, DR .
BMC MICROBIOLOGY, 2005, 5 (1)
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer [J].
Anderson, RT ;
Vrionis, HA ;
Ortiz-Bernad, I ;
Resch, CT ;
Long, PE ;
Dayvault, R ;
Karp, K ;
Marutzky, S ;
Metzler, DR ;
Peacock, A ;
White, DC ;
Lowe, M ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (10) :5884-5891
[5]  
[Anonymous], 1993, Biol. Chem. Hoppe Seyler, DOI DOI 10.1515/BCHM3.1993.374.1-6.143
[6]   Site-directed mutagenesis of the yeast multicopper oxidase Fet3p [J].
Askwith, CC ;
Kaplan, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (35) :22415-22419
[7]   METHANOGENS - RE-EVALUATION OF A UNIQUE BIOLOGICAL GROUP [J].
BALCH, WE ;
FOX, GE ;
MAGRUM, LJ ;
WOESE, CR ;
WOLFE, RS .
MICROBIOLOGICAL REVIEWS, 1979, 43 (02) :260-296
[8]  
BARRETT E, 2007, AM SOC MICR 107 GEN
[9]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[10]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555