THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SINGULARLY PERTURBED GAUSSIAN WEIGHT

被引:5
|
作者
Wang, Dan [1 ]
Zhu, Mengkun [2 ,3 ]
Chen, Yang [3 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Dept Appl Math, Changzhou 213164, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Math, Ave Univ, Taipa, Macao, Peoples R China
关键词
Hankel matrices; orthogonal polynomials; smallest eigenvalue; asymptotics;
D O I
10.1090/proc/15757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An asymptotic expression for the polynomials P-n(z), z is not an element of (-infinity, infinity), orthonormal with respect to a singularly perturbed Gaussian weight, exp(-z(2)- t/z(2)), z is an element of (-infinity, infinity), t > 0, is established. Based on this, the asymptotic behavior of the smallest eigenvalue of the Hankel matrix generated by the weight is described.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 15 条
  • [1] The smallest eigenvalue of the Hankel matrices associated with a perturbed Jacobi weight
    Wang, Yuxi
    Chen, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 474
  • [2] THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SEMICLASSICAL LAGUERRE WEIGHT
    Wang, Dan
    Zhu, Mengkun
    Chen, Yang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 53 - 62
  • [3] The smallest eigenvalue of large Hankel matrices
    Zhu, Mengkun
    Chen, Yang
    Emmart, Niall
    Weems, Charles
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 375 - 387
  • [4] The smallest eigenvalue of large Hankel matrices generated by a deformed Laguerre weight
    Zhu, Mengkun
    Emmart, Niall
    Chen, Yang
    Weems, Charles
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) : 3272 - 3288
  • [5] Discrete, Continuous and Asymptotic for a Modified Singularly Gaussian Unitary Ensemble and the Smallest Eigenvalue of Its Large Hankel Matrices
    Wang, Dan
    Zhu, Mengkun
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2024, 27 (01)
  • [6] Discrete, Continuous and Asymptotic for a Modified Singularly Gaussian Unitary Ensemble and the Smallest Eigenvalue of Its Large Hankel Matrices
    Dan Wang
    Mengkun Zhu
    Mathematical Physics, Analysis and Geometry, 2024, 27
  • [7] The Smallest Eigenvalue of Hankel Matrices
    Berg, Christian
    Szwarc, Ryszard
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (01) : 107 - 133
  • [8] The Smallest Eigenvalue of Hankel Matrices
    Christian Berg
    Ryszard Szwarc
    Constructive Approximation, 2011, 34 : 107 - 133
  • [9] THE SMALLEST EIGENVALUE OF THE ILL-CONDITIONED HANKEL MATRICES ASSOCIATED WITH A SEMI-CLASSICAL HERMITE WEIGHT
    Wang, Yuxi
    Zhu, Mengkun
    Chen, Yang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (12) : 5345 - 5352
  • [10] Painleve III′ and the Hankel determinant generated by a singularly perturbed Gaussian weight
    Min, Chao
    Lyu, Shulin
    Chen, Yang
    NUCLEAR PHYSICS B, 2018, 936 : 169 - 188