THE SMALLEST EIGENVALUE OF LARGE HANKEL MATRICES ASSOCIATED WITH A SINGULARLY PERTURBED GAUSSIAN WEIGHT

被引:6
作者
Wang, Dan [1 ]
Zhu, Mengkun [2 ,3 ]
Chen, Yang [3 ]
机构
[1] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Dept Appl Math, Changzhou 213164, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Math, Ave Univ, Taipa, Macao, Peoples R China
关键词
Hankel matrices; orthogonal polynomials; smallest eigenvalue; asymptotics;
D O I
10.1090/proc/15757
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An asymptotic expression for the polynomials P-n(z), z is not an element of (-infinity, infinity), orthonormal with respect to a singularly perturbed Gaussian weight, exp(-z(2)- t/z(2)), z is an element of (-infinity, infinity), t > 0, is established. Based on this, the asymptotic behavior of the smallest eigenvalue of the Hankel matrix generated by the weight is described.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 23 条
[1]  
Berg C, 2002, MATH SCAND, V91, P67
[2]   The Smallest Eigenvalue of Hankel Matrices [J].
Berg, Christian ;
Szwarc, Ryszard .
CONSTRUCTIVE APPROXIMATION, 2011, 34 (01) :107-133
[3]   Singular linear statistics of the Laguerre unitary ensemble and Painleve. III. Double scaling analysis [J].
Chen, Min ;
Chen, Yang .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)
[4]   On the linear statistics of Hermitian random matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04) :1141-1152
[5]   Smallest eigenvalues of Hankel matrices for exponential weights [J].
Chen, Y ;
Lubinsky, DS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :476-495
[6]   Thermodynamic relations of the Hermitian matrix ensembles [J].
Chen, Y ;
Ismail, MEH .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (19) :6633-6654
[7]   Small eigenvalues of large Hankel matrices [J].
Chen, Y ;
Lawrence, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (42) :7305-7315
[8]   Smallest eigenvalue of large Hankel matrices at critical point: Comparing conjecture with parallelised computation [J].
Chen, Yang ;
Sikorowski, Jakub ;
Zhu, Mengkun .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 363
[9]   Coulumb Fluid, Painleve Transcendents, and the Information Theory of MIMO Systems [J].
Chen, Yang ;
McKay, Matthew R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) :4594-4634
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773