A modified leapfrog scheme for shallow water equations

被引:7
作者
Sun, Wen-Yih [1 ,2 ,3 ]
Sun, Oliver M. T. [4 ]
机构
[1] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
[2] Nagoya Univ, HyARC, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[3] Natl Cent Univ, Dept Atmospher Sci, Tao Yuan, Taiwan
[4] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA
关键词
Shallow water equations; Leapfrog scheme; Courant number; Eigenvalue; Semi-implicit; Finite-volume; Stability;
D O I
10.1016/j.compfluid.2011.08.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the 1D linearized shallow water equations, the Courant number should be <0.5 for stability in the original Leapfrog (LF) scheme. Here, we propose using the time-averaged height in the pressure gradient force in the momentum equations. The stability analysis shows that the new scheme is neutral when Courant number <1. The scheme is 2nd order accurate in both time and space. It does not require iterations and can be easily applied in 2D or 3D wave equations. The numerical simulations for 2-D linearized shallow water equations are consistent with those obtained from a 2-time-step semi-implicit scheme. The time filter can also be easily applied to this modified LF scheme. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [41] A well-balanced spectral volume scheme with the wetting-drying property for the shallow-water equations
    Cozzolino, Luca
    Della Morte, Renata
    Del Giudice, Giuseppe
    Palumbo, Anna
    Pianese, Domenico
    JOURNAL OF HYDROINFORMATICS, 2012, 14 (03) : 745 - 760
  • [42] Normalized shallow water equations
    T. G. Elizarova
    M. V. Afanasieva
    Moscow University Physics Bulletin, 2010, 65 : 13 - 16
  • [43] Normalized shallow water equations
    Elizarova, T. G.
    Afanasieva, M. V.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2010, 65 (01) : 13 - 16
  • [44] Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction
    Bonev, Boris
    Hesthaven, Jan S.
    Giraldo, Francis X.
    Kopera, Michal A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 362 : 425 - 448
  • [45] A NUMERICAL SCHEME FOR SOLVING OF SHALLOW-WATER EQUATIONS - MICROCOMPUTER VERSION FOR IBM PC
    STEPIEN, E
    BRECHER, RW
    ADVANCES IN ENGINEERING SOFTWARE, 1992, 15 (02) : 107 - 112
  • [46] Adaptive Q-tree Godunov-type scheme for shallow water equations
    Rogers, B
    Fujihara, M
    Borthwick, AGL
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (03) : 247 - 280
  • [47] Application of Large Time Step TVD High Order Scheme to Shallow Water Equations
    Xu, Renyi
    Borthwick, Alistair G. L.
    Xu, Bo
    ATMOSPHERE, 2022, 13 (11)
  • [48] A well-balanced scheme for the shallow-water equations with topography or Manning friction
    Michel-Dansac, Victor
    Berthon, Christophe
    Clain, Stephane
    Foucher, Francoise
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 335 : 115 - 154
  • [49] A large time step Godunov scheme for free-surface shallow water equations
    Xu, Renyi
    Zhong, Deyu
    Wu, Baosheng
    Fu, Xudong
    Miao, Runze
    CHINESE SCIENCE BULLETIN, 2014, 59 (21): : 2534 - 2540
  • [50] High-order balanced CWENO scheme for movable bed shallow water equations
    Caleffi, V.
    Valiani, A.
    Bernini, A.
    ADVANCES IN WATER RESOURCES, 2007, 30 (04) : 730 - 741