A modified leapfrog scheme for shallow water equations

被引:7
作者
Sun, Wen-Yih [1 ,2 ,3 ]
Sun, Oliver M. T. [4 ]
机构
[1] Purdue Univ, Dept Earth & Atmospher Sci, W Lafayette, IN 47907 USA
[2] Nagoya Univ, HyARC, Chikusa Ku, Nagoya, Aichi 4648601, Japan
[3] Natl Cent Univ, Dept Atmospher Sci, Tao Yuan, Taiwan
[4] Woods Hole Oceanog Inst, Dept Phys Oceanog, Woods Hole, MA 02543 USA
关键词
Shallow water equations; Leapfrog scheme; Courant number; Eigenvalue; Semi-implicit; Finite-volume; Stability;
D O I
10.1016/j.compfluid.2011.08.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the 1D linearized shallow water equations, the Courant number should be <0.5 for stability in the original Leapfrog (LF) scheme. Here, we propose using the time-averaged height in the pressure gradient force in the momentum equations. The stability analysis shows that the new scheme is neutral when Courant number <1. The scheme is 2nd order accurate in both time and space. It does not require iterations and can be easily applied in 2D or 3D wave equations. The numerical simulations for 2-D linearized shallow water equations are consistent with those obtained from a 2-time-step semi-implicit scheme. The time filter can also be easily applied to this modified LF scheme. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [31] The FVC Scheme on Unstructured Meshes for the Two-Dimensional Shallow Water Equations
    Ziggaf, Moussa
    Boubekeur, Mohamed
    Kissami, Imad
    Benkhaldoun, Fayssal
    El Mahi, Imad
    FINITE VOLUMES FOR COMPLEX APPLICATIONS IX-METHODS, THEORETICAL ASPECTS, EXAMPLES, FVCA 9, 2020, 323 : 455 - 465
  • [32] A gas-kinetic scheme for shallow-water equations with source terms
    Huazhong Tang
    Tao Tang
    Kun Xu
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 365 - 382
  • [33] Analysis of a new Kolgan-type scheme motivated by the shallow water equations
    Vazquez-Cendon, M. Elena
    Cea, Luis
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) : 489 - 506
  • [34] A gas-kinetic scheme for shallow-water equations with source terms
    Tang, HZ
    Tang, T
    Xu, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (03): : 365 - 382
  • [35] Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf
    Kernkamp, Herman W. J.
    Van Dam, Arthur
    Stelling, Guus S.
    de Goede, Erik D.
    OCEAN DYNAMICS, 2011, 61 (08) : 1175 - 1188
  • [36] Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf
    Herman W. J. Kernkamp
    Arthur Van Dam
    Guus S. Stelling
    Erik D. de Goede
    Ocean Dynamics, 2011, 61 : 1175 - 1188
  • [37] Asymptotic preserving scheme for the shallow water equations with source terms on unstructured meshes
    Duran, A.
    Marche, F.
    Turpault, R.
    Berthon, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 287 : 184 - 206
  • [38] A FULLY WELL-BALANCED SCHEME FOR SHALLOW WATER EQUATIONS WITH CORIOLIS FORCE
    Desveaux, Vivien
    Masset, Alice
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2022, 20 (07) : 1875 - 1900
  • [39] A central moments-based lattice Boltzmann scheme for shallow water equations
    De Rosis, Alessandro
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 319 : 379 - 392
  • [40] FINITE VOLUME MULTILEVEL APPROXIMATION OF THE SHALLOW WATER EQUATIONS WITH A TIME EXPLICIT SCHEME
    Bousquet, Arthur
    Marion, Martine
    Temam, Roger
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (04) : 762 - 786