A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

被引:12
作者
Shen, Ruigang [1 ]
Shu, Shi [2 ]
Yang, Ying [3 ]
Lu, Benzhuo [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[3] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Inst Computat Math & Sci Eng Comp, Natl Ctr Math & Interdisciplinary Sci, LSEC,Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; Decoupling method; Two-grid method; Semi-discretization; Full discretization; Optimal error estimate; Gummel iteration; MIXED FINITE-ELEMENT; DIFFERENCE SCHEME; MODEL; ACETYLCHOLINESTERASE; SYSTEMS;
D O I
10.1007/s11075-019-00744-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L-2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H-1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.
引用
收藏
页码:1613 / 1651
页数:39
相关论文
共 50 条
  • [31] Some Random Batch Particle Methods for the Poisson-Nernst-Planck and Poisson-Boltzmann Equations
    Li, Lei
    Liu, Jian-Guo
    Tang, Yijia
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2022, 32 (01) : 41 - 82
  • [32] An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations
    Yang, Ying
    Lu, Benzhuo
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (01) : 113 - 130
  • [33] Local averaging type a posteriori error estimates for the nonlinear steady-state Poisson-Nernst-Planck equations
    Yang, Ying
    Shen, Ruigang
    Fang, Mingjuan
    Shu, Shi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 404
  • [34] Computational Study on Hysteresis of Ion Channels: Multiple Solutions to Steady-State Poisson-Nernst-Planck Equations
    Ding, Jie
    Sun, Hui
    Wang, Zhongming
    Zhou, Shenggao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (05) : 1549 - 1572
  • [35] Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2018, 368 : 50 - 65
  • [36] Upscaling the Poisson-Nernst-Planck equations for ion transport in weakly heterogeneous charged porous media
    Klika, Vaclav
    Gaffney, Eamonn A.
    APPLIED MATHEMATICS LETTERS, 2023, 137
  • [37] Unconditional superconvergence analysis of a structure-preserving finite element method for the Poisson-Nernst-Planck equations
    Yang, Huaijun
    Li, Meng
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2024, 50 (03)
  • [38] Adaptive finite element approximation for steady-state Poisson-Nernst-Planck equations
    Tingting Hao
    Manman Ma
    Xuejun Xu
    Advances in Computational Mathematics, 2022, 48
  • [39] New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials
    Schmuck, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (02)
  • [40] An Inverse Averaging Finite Element Method for Solving the Size-Modified Poisson-Nernst-Planck Equations in Ion Channel Simulations
    Shen, Ruigang
    Zhang, Qianru
    Lu, Benzhuo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2024, 36 (02) : 521 - 550