A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

被引:12
作者
Shen, Ruigang [1 ]
Shu, Shi [2 ]
Yang, Ying [3 ]
Lu, Benzhuo [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[3] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Inst Computat Math & Sci Eng Comp, Natl Ctr Math & Interdisciplinary Sci, LSEC,Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; Decoupling method; Two-grid method; Semi-discretization; Full discretization; Optimal error estimate; Gummel iteration; MIXED FINITE-ELEMENT; DIFFERENCE SCHEME; MODEL; ACETYLCHOLINESTERASE; SYSTEMS;
D O I
10.1007/s11075-019-00744-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L-2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H-1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.
引用
收藏
页码:1613 / 1651
页数:39
相关论文
共 50 条
  • [21] Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions
    Lu, Benzhuo
    Holst, Michael J.
    McCammon, J. Andrew
    Zhou, Y. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) : 6979 - 6994
  • [22] Poisson-Nernst-Planck equations with high-order steric effects
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 411
  • [23] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [24] Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects
    Lin, Tai-Chia
    Eisenberg, Bob
    NONLINEARITY, 2015, 28 (07) : 2053 - 2080
  • [25] A flux-based moving mesh method applied to solving the Poisson-Nernst-Planck equations
    Lv, Minrui
    Lu, Benzhuo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 513
  • [26] A virtual element method for the steady-state Poisson-Nernst-Planck equations on polygonal meshes
    Liu, Yang
    Shu, Shi
    Wei, Huayi
    Yang, Ying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 95 - 112
  • [27] Computation of Poisson-Nernst-Planck equations describing ion channel on cell membrane
    Horng, Tzyy-Leng
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2011, 40 : 168 - 168
  • [28] ASYMPTOTIC ANALYSIS ON DIELECTRIC BOUNDARY EFFECTS OF MODIFIED POISSON-NERNST-PLANCK EQUATIONS
    Ji, Lijie
    Liu, Pei
    Xu, Zhenli
    Zhou, Shenggao
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (03) : 1802 - 1822
  • [29] A study of the numerical stability of an ImEx scheme with application to the Poisson-Nernst-Planck equations
    Pugh, M. C.
    Yan, David
    Dawson, F. P.
    APPLIED NUMERICAL MATHEMATICS, 2021, 163 : 239 - 253
  • [30] Unconditionally positivity preserving and energy dissipative schemes for Poisson-Nernst-Planck equations
    Shen, Jie
    Xu, Jie
    NUMERISCHE MATHEMATIK, 2021, 148 (03) : 671 - 697