A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

被引:13
作者
Shen, Ruigang [1 ]
Shu, Shi [2 ]
Yang, Ying [3 ]
Lu, Benzhuo [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[3] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Inst Computat Math & Sci Eng Comp, Natl Ctr Math & Interdisciplinary Sci, LSEC,Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; Decoupling method; Two-grid method; Semi-discretization; Full discretization; Optimal error estimate; Gummel iteration; MIXED FINITE-ELEMENT; DIFFERENCE SCHEME; MODEL; ACETYLCHOLINESTERASE; SYSTEMS;
D O I
10.1007/s11075-019-00744-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L-2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H-1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.
引用
收藏
页码:1613 / 1651
页数:39
相关论文
共 42 条
[21]   Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations [J].
He, YN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1263-1285
[22]   EVOLUTION SYSTEMS IN SEMICONDUCTOR-DEVICE MODELING - A CYCLIC UNCOUPLED LINE ANALYSIS FOR THE GUMMEL MAP [J].
JEROME, JW .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1987, 9 (04) :455-492
[23]   A two-grid discretization method for decoupling systems of partial differential equations [J].
Jin, Jicheng ;
Shu, Shi ;
Xu, Jinchao .
MATHEMATICS OF COMPUTATION, 2006, 75 (256) :1617-1626
[24]   A free energy satisfying finite difference method for Poisson-Nernst-Planck equations [J].
Liu, Hailiang ;
Wang, Zhongming .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 :363-376
[25]   Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes II: Size Effects on Ionic Distributions and Diffusion-Reaction Rates [J].
Lu, Benzhuo ;
Zhou, Y. C. .
BIOPHYSICAL JOURNAL, 2011, 100 (10) :2475-2485
[26]   Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions [J].
Lu, Benzhuo ;
Holst, Michael J. ;
McCammon, J. Andrew ;
Zhou, Y. C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :6979-6994
[27]   A multigrid method for the Poisson-Nernst-Planck equations [J].
Mathur, Sanjay R. ;
Murthy, Jayathi Y. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) :4031-4039
[28]   A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow [J].
Mu, Mo ;
Xu, Jinchao .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :1801-1813
[29]  
Planck M., 1890, Ann. Phys, V275, P161, DOI [DOI 10.1002/ANDP.18902750202, 10.1002/andp.18902750202]
[30]   Convergent discretizations for the Nernst-Planck-Poisson system [J].
Prohl, Andreas ;
Schmuck, Markus .
NUMERISCHE MATHEMATIK, 2009, 111 (04) :591-630