A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations

被引:12
作者
Shen, Ruigang [1 ]
Shu, Shi [2 ]
Yang, Ying [3 ]
Lu, Benzhuo [4 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc, Minist Educ, Xiangtan 411105, Peoples R China
[3] Guilin Univ Elect Technol, Sch Math & Computat Sci, Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541004, Peoples R China
[4] Chinese Acad Sci, Inst Computat Math & Sci Eng Comp, Natl Ctr Math & Interdisciplinary Sci, LSEC,Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Poisson-Nernst-Planck equations; Decoupling method; Two-grid method; Semi-discretization; Full discretization; Optimal error estimate; Gummel iteration; MIXED FINITE-ELEMENT; DIFFERENCE SCHEME; MODEL; ACETYLCHOLINESTERASE; SYSTEMS;
D O I
10.1007/s11075-019-00744-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-grid strategy for decoupling the time-dependent Poisson-Nernst-Planck equations describing the mass concentration of ions and the electrostatic potential. The computational system is decoupled to smaller systems by using coarse space solutions at each time level, which can speed up the solution process compared with the finite element method combined with the Gummel iteration. We derive the optimal error estimates in L-2 norm for both semi- and fully discrete finite element approximations. Based on the a priori error estimates, the error estimates in H-1 norm are presented for the two-grid algorithm. The theoretical results indicate this decoupling method can retain the same accuracy as the finite element method. Numerical experiments including the Poisson-Nernst-Planck equations for an ion channel show the efficiency and effectiveness of the decoupling two-grid method.
引用
收藏
页码:1613 / 1651
页数:39
相关论文
共 50 条
  • [1] A decoupling two-grid method for the time-dependent Poisson-Nernst-Planck equations
    Ruigang Shen
    Shi Shu
    Ying Yang
    Benzhuo Lu
    Numerical Algorithms, 2020, 83 : 1613 - 1651
  • [2] A DECOUPLING TWO-GRID METHOD FOR THE STEADY-STATE POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Lu, Benzhuo
    Xie, Yan
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2019, 37 (04) : 556 - 578
  • [3] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [4] ERROR ANALYSIS OF VIRTUAL ELEMENT METHODS FOR THE TIME-DEPENDENT POISSON-NERNST-PLANCK EQUATIONS
    Yang, Ying
    Liu, Ya
    Liu, Yang
    Shu, Shi
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 731 - 770
  • [5] Residual Type a Posteriori Error Estimates for the Time-Dependent Poisson-Nernst-Planck Equations
    Zhu, Wanwan
    Yang, Ying
    Ji, Guanghua
    Lu, Benzhuo
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [6] Robust a Posteriori Error Estimates of Time-Dependent Poisson-Nernst-Planck Equations
    Fu, Keli
    Hao, Tingting
    MATHEMATICS, 2024, 12 (17)
  • [7] A multigrid method for the Poisson-Nernst-Planck equations
    Mathur, Sanjay R.
    Murthy, Jayathi Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (17-18) : 4031 - 4039
  • [8] Error analysis of finite element method for Poisson-Nernst-Planck equations
    Sun, Yuzhou
    Sun, Pengtao
    Zheng, Bin
    Lin, Guang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 301 : 28 - 43
  • [9] Entropy method for generalized Poisson-Nernst-Planck equations
    Gonzalez Granada, Jose Rodrigo
    Kovtunenko, Victor A.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2018, 8 (04) : 603 - 619
  • [10] A dynamic mass transport method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Maimaitiyiming, Wumaier
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 473