A multi-parameter Generalized Farlie-Gumbel-Morgenstern bivariate copula family via Bernstein polynomial

被引:11
作者
Susam, Selim Orhun [1 ]
机构
[1] Munzur Univ, Dept Econometr, Tunceli, Turkey
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2022年 / 51卷 / 02期
关键词
Bernstein polynomial; Copula; Kendall's tau; FGM copula;
D O I
10.15672/hujms.993698
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are proposing a flexible method for constructing a bivariate generalized Farlie-Gumbel-Morgenstern (G-FGM) copula family. The method is mainly developed around the function phi(t) (t is an element of [0, 1]), where phi is the generator of the G-FGM copula. The proposed construction method has useful advantages. The first of which is the direct relationship between the phi function and Kendall's tau. The second advantage is the possibility of constructing a multi-parameter G-FGM copula which allows us to better harmonize empirical instruction with the model. The construction method is illustrated by three real data examples.
引用
收藏
页码:618 / 631
页数:14
相关论文
共 23 条
[1]   Symmetry and dependence properties within a semiparametric family of bivariate copulas [J].
Amblard, C ;
Girard, S .
JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (06) :715-727
[2]   From the Huang-Kotz FGM distribution to Baker's bivariate distribution [J].
Bairamov, I. ;
Bayramoglu, K. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 113 :106-115
[3]   Density estimation of circular data with Bernstein polynomials [J].
Carnicero, J. A. ;
Wiper, M. P. ;
Ausin, M. G. .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02) :273-286
[4]   Non-exchangeable copulas and multivariate total positivity [J].
Cerqueti, Roy ;
Lupi, Claudio .
INFORMATION SCIENCES, 2016, 360 :163-169
[5]  
Duncan M., 2005, Applied Geometry for Computer Graphics and CAD
[6]   Measures of non-exchangeability for bivariate random vectors [J].
Durante, Fabrizio ;
Klement, Erich Peter ;
Sempi, Carlo ;
Ubeda-Flores, Manuel .
STATISTICAL PAPERS, 2010, 51 (03) :687-699
[7]  
Emura T., 2019, JSS Research Series in Statistics
[8]  
Feller W., 1965, An Introduction to Probability Theory and its Applications
[9]  
Flores M. Ubeda, 1998, INTRO TEORIA COPULAS
[10]  
Lallena J.A. Rodriguez, 1992, THESIS U GRANADA