Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes

被引:93
作者
Cai, Zhao [1 ]
Zhang, Yusheng [1 ]
Zhao, Yuxin [4 ]
Wu, Yueshen [2 ]
Xu, Wenwen [1 ,2 ]
Wen, Xuemei [1 ]
Zhong, Yang [1 ,3 ]
Zhang, Ying [5 ]
Liu, Wen [1 ]
Wang, Hailiang [2 ]
Kuang, Yun [1 ]
Sun, Xiaoming [1 ,3 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing Adv Innovat Ctr Soft Matter Sci & Engn, Beijing 100029, Peoples R China
[2] Yale Univ, Dept Chem, West Haven, CT 06516 USA
[3] Beijing Univ Chem Technol, Coll Energy, Beijing 100029, Peoples R China
[4] SINOPEC Res Inst Safety Engn, State Key Lab Safety & Control Chem, 339 Songling Rd, Qingdao 266101, Peoples R China
[5] Monash Univ, Sch Chem, Wellington Rd, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
CO2; reduction; selectivity; copper; contact interface; reaction kinetics; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; HIGH-EFFICIENCY; METAL-OXIDE; CATALYSTS; HYDROCARBONS; ELECTROCATALYST; PERFORMANCE; SURFACES;
D O I
10.1007/s12274-018-2221-7
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic CO2 reduction is a promising way to mitigate the urgent energy and environmental issues, but how to increase the selectivity for desired product among multiple competing reaction pathways remains a bottleneck. Here, we demonstrate that engineering the gas-liquid-solid contact interface on the electrode surface could tailor the selectivity of CO2 reduction and meanwhile suppress H-2 production through regulated reaction kinetics. Specifically, polytetrafluoroethylene (PTFE) was utilized to modify a Cu nanoarray electrode as an example, which is able to change the electrode surface from aerophobic to aerophilic state. The enriched nano-tunnels of the Cu nanoarray electrode can facilitate CO2 transportation and pin gaseous products on the electrode surface. The latter is believed to be the reason that boosts the Faradaic efficiency of liquid products by 67% and limits the H-2 production to less than half of before. This interface engineering strategy also lowered H2O (proton) affinity, therefore promoting CO and HCOOH production. Engineering the electrode contact interface controls the reaction kinetics and the selectivity of products, which should be inspiring for other electrochemical reactions.
引用
收藏
页码:345 / 349
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 2018, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ange.201804881
[2]   Single-Crystalline Ultrathin Co3O4 Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis [J].
Cai, Zhao ;
Bi, Yongmin ;
Hu, Enyuan ;
Liu, Wen ;
Dwarica, Nico ;
Tian, Yang ;
Li, Xiaolin ;
Kuang, Yun ;
Li, Yaping ;
Yang, Xiao-Qing ;
Wang, Hailiang ;
Sun, Xiaoming .
ADVANCED ENERGY MATERIALS, 2018, 8 (03)
[3]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989
[4]   Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide [J].
Dai, Lei ;
Qin, Qing ;
Wang, Pei ;
Zhao, Xiaojing ;
Hu, Chengyi ;
Liu, Pengxin ;
Qin, Ruixuan ;
Chen, Mei ;
Ou, Daohui ;
Xu, Chaofa ;
Mo, Shiguang ;
Wu, Binghui ;
Fu, Gang ;
Zhang, Peng ;
Zheng, Nanfeng .
SCIENCE ADVANCES, 2017, 3 (09)
[5]   Observation of Pseudocapacitive Effect and Fast Ion Diffusion in Bimetallic Sulfides as an Advanced Sodium-Ion Battery Anode [J].
Fang, Guozhao ;
Wu, Zhuoxi ;
Zhou, Jiang ;
Zhu, Chuyu ;
Cao, Xinxin ;
Lin, Tianquan ;
Chen, Yuming ;
Wang, Chao ;
Pan, Anqiang ;
Liang, Shuquan .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[6]   Enhancing CO2 Electroreduction with the Metal-Oxide Interface [J].
Gao, Dunfeng ;
Zhang, Yi ;
Zhou, Zhiwen ;
Cai, Fan ;
Zhao, Xinfei ;
Huang, Wugen ;
Li, Yangsheng ;
Zhu, Junfa ;
Liu, Ping ;
Yang, Fan ;
Wang, Guoxiong ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (16) :5652-5655
[7]   Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction [J].
Gao, Shan ;
Sun, Zhongti ;
Liu, Wei ;
Jiao, Xingchen ;
Zu, Xiaolong ;
Hu, Qitao ;
Sun, Yongfu ;
Yao, Tao ;
Zhang, Wenhua ;
Wei, Shiqiang ;
Xie, Yi .
NATURE COMMUNICATIONS, 2017, 8
[8]   Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons [J].
Hahn, Christopher ;
Hatsukade, Toru ;
Kim, Youn-Geun ;
Vailionis, Arturas ;
Baricuatro, Jack H. ;
Higgins, Drew C. ;
Nitopi, Stephanie A. ;
Soriaga, Manuel P. ;
Jaramillo, Thomas F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (23) :5918-5923
[9]   Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid [J].
Han, Nana ;
Yang, Ke R. ;
Lu, Zhiyi ;
Li, Yingjie ;
Xu, Wenwen ;
Gao, Tengfei ;
Cai, Zhao ;
Zhang, Ying ;
Batista, Victor S. ;
Liu, Wen ;
Sun, Xiaoming .
NATURE COMMUNICATIONS, 2018, 9
[10]   Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO2 Reduction [J].
Huo, Shengjuan ;
Weng, Zhe ;
Wu, Zishan ;
Zhong, Yiren ;
Wu, Yueshen ;
Fang, Jianhui ;
Wang, Hailiang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (34) :28519-28526