Void-growth computational analysis in elastic-plastic porous materials

被引:17
作者
Bensaada, R. [1 ,2 ,3 ]
Kanit, T. [1 ]
Imad, A. [1 ]
Almansba, M. [2 ]
Saouab, A. [3 ]
机构
[1] Univ Lille, Unite Mecan Lille UML Joseph Boussinesq, ULR 7512, F-59655 Villeneuve Dascq, France
[2] Univ Tizi Ouzou, Mech Engn Dept, Tizi Ouzou, Algeria
[3] Univ Le Havre Normandie, Lab Ondes & Milieux Complexes LOMC, UMR CNRS 6294, Le Havre, France
关键词
Porosity; Homogenization; Plasticity; Triaxiality; Micromechanical modeling; EFFECTIVE YIELD SURFACE; GURSON-TYPE CRITERION; DUCTILE FRACTURE; MECHANICAL-PROPERTIES; NONUNIFORM DISTRIBUTION; THERMAL-CONDUCTIVITY; NONLINEAR COMPOSITES; NONSPHERICAL VOIDS; APPROXIMATE MODELS; CONSTITUTIVE MODEL;
D O I
10.1016/j.ijmecsci.2021.107021
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study aims to model the effective mechanical response of highly porous materials using computational homogenisation. A two-phase material is considered here in the form of a von Mises elastic-plastic matrix that includes spherical identical voids. A wide range of void volume fractions from 0.1% to 24% is investigated. The representative volume element principle is adopted to determine the effective yield surface of each case. Its representativeness is checked from a statistical point of view and the mechanical response is set for each porosity rate considering a wide range of stress triaxiality ratios. The relation between void volume fraction and stress triaxiality is discussed and an analysis based on the unit cell computation is proposed to examine the void shape evolution according to these parameters. Therefore, an improvement of the Gurson-Tvergaard-Needleman (GTN) model considering a wide range of void volume fractions is presented. The computational data are subsequently used to enhance the original GTN model. The parameter q1 is translated as a linear function of the porosity while q2 is kept equal to 1. This makes the model simpler and more suitable for a wide range of porous materials.
引用
收藏
页数:15
相关论文
共 81 条
[1]   Numerical methods for porous metals with deformation-induced anisotropy [J].
Aravas, N ;
Castañeda, PP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (36-38) :3767-3805
[2]   An iterative analytical model for heterogeneous materials homogenization [J].
Batache, D. ;
Kanit, T. ;
Kaddouri, W. ;
Bensaada, R. ;
Imad, A. ;
Outtas, T. .
COMPOSITES PART B-ENGINEERING, 2018, 142 :56-67
[3]   Effective transverse elastic properties of unidirectional fiber reinforced composites [J].
Beicha, D. ;
Kanit, T. ;
Brunet, Y. ;
Imad, A. ;
El Moumen, A. ;
Khelfaoui, Y. .
MECHANICS OF MATERIALS, 2016, 102 :47-53
[4]   Computation of effective behavior of isotropic transverse composite in nonlinear problems [J].
Benhizia, A. ;
Kanit, T. ;
Outtas, T. ;
Madani, S. ;
Imad, A. .
MECHANICS RESEARCH COMMUNICATIONS, 2014, 59 :6-13
[5]   A ductile fracture analysis using a local damage model [J].
Benseddiq, N. ;
Imad, A. .
INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2008, 85 (04) :219-227
[6]   Ductile Fracture by Void Growth to Coalescence [J].
Benzerga, A. Amine ;
Leblond, Jean-Baptiste .
ADVANCES IN APPLIED MECHANICS, VOL 44, 2010, 44 :169-305
[7]   Anisotropic ductile fracture Part II: theory [J].
Benzerga, AA ;
Besson, J ;
Pineau, A .
ACTA MATERIALIA, 2004, 52 (15) :4639-4650
[8]   Anisotropic ductile fracture Part I: experiments [J].
Benzerga, AA ;
Besson, J ;
Pineau, A .
ACTA MATERIALIA, 2004, 52 (15) :4623-4638
[9]   Micromechanics of coalescence in ductile fracture [J].
Benzerga, AA .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (06) :1331-1362
[10]   Numerical implementation of a non-local GTN model for explicit FE simulation of ductile damage and fracture [J].
Bergo, Sondre ;
Morin, David ;
Hopperstad, Odd Sture .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 219 :134-150