Efficient prediction of terahertz quantum cascade laser dynamics from steady-state simulations

被引:27
作者
Agnew, G. [1 ]
Grier, A. [2 ]
Taimre, T. [3 ]
Lim, Y. L. [1 ]
Nikolic, M. [1 ]
Valavanis, A. [2 ]
Cooper, J. [2 ]
Dean, P. [2 ]
Khanna, S. P. [2 ]
Lachab, M. [2 ]
Linfield, E. H. [2 ]
Davies, A. G. [2 ]
Harrison, P. [4 ]
Ikonic, Z. [2 ]
Indjin, D. [2 ]
Rakic, A. D. [1 ]
机构
[1] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
[4] Sheffield Hallam Univ, Mat & Engn Res Inst, Sheffield S1 1WB, S Yorkshire, England
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会;
关键词
TEMPERATURE; FEEDBACK;
D O I
10.1063/1.4918993
中图分类号
O59 [应用物理学];
学科分类号
摘要
Terahertz-frequency quantum cascade lasers (THz QCLs) based on bound-to-continuum active regions are difficult to model owing to their large number of quantum states. We present a computationally efficient reduced rate equation (RE) model that reproduces the experimentally observed variation of THz power with respect to drive current and heat-sink temperature. We also present dynamic (time-domain) simulations under a range of drive currents and predict an increase in modulation bandwidth as the current approaches the peak of the light-current curve, as observed experimentally in mid-infrared QCLs. We account for temperature and bias dependence of the carrier lifetimes, gain, and injection efficiency, calculated from a full rate equation model. The temperature dependence of the simulated threshold current, emitted power, and cut-off current are thus all reproduced accurately with only one fitting parameter, the interface roughness, in the full REs. We propose that the model could therefore be used for rapid dynamical simulation of QCL designs. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 21 条
[1]   13 GHz direct modulation of terahertz quantum cascade lasers [J].
Barbieri, Stefano ;
Maineult, Wilfried ;
Dhillon, Sukhdeep S. ;
Sirtori, Carlo ;
Alton, Jesse ;
Breuil, Nicolas ;
Beere, Harvey E. ;
Ritchie, David A. .
APPLIED PHYSICS LETTERS, 2007, 91 (14)
[2]   High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line [J].
Calvar, A. ;
Amanti, M. I. ;
St-Jean, M. Renaudat ;
Barbieri, S. ;
Bismuto, A. ;
Gini, E. ;
Beck, M. ;
Faist, J. ;
Sirtori, C. .
APPLIED PHYSICS LETTERS, 2013, 102 (18)
[3]   Wireless communication demonstration at 4.1 THz using quantum cascade laser and quantum well photodetector [J].
Chen, Z. ;
Tan, Z. Y. ;
Han, Y. J. ;
Zhang, R. ;
Guo, X. G. ;
Li, H. ;
Cao, J. C. ;
Liu, H. C. .
ELECTRONICS LETTERS, 2011, 47 (17) :1002-U89
[4]   Investigation of thermal effects in quantum-cascade lasers [J].
Evans, Craig A. ;
Jovanovic, Vladimir D. ;
Indjin, Dragan ;
Ikonic, Zoran ;
Harrison, Paul .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (9-10) :859-867
[5]  
Faist J., 2013, Quantum Cascade Lasers
[6]   Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling [J].
Fathololoumi, S. ;
Dupont, E. ;
Chan, C. W. I. ;
Wasilewski, Z. R. ;
Laframboise, S. R. ;
Ban, D. ;
Matyas, A. ;
Jirauschek, C. ;
Hu, Q. ;
Liu, H. C. .
OPTICS EXPRESS, 2012, 20 (04) :3866-3876
[7]   Modelling of temperature effects on the characteristics of mid-infrared quantum cascade lasers [J].
Hamadou, A. ;
Thobel, J. -L. ;
Lamari, S. .
OPTICS COMMUNICATIONS, 2008, 281 (21) :5385-5388
[8]   Dynamic modeling of a midinfrared quantum cascade laser [J].
Hamadou, A. ;
Lamari, S. ;
Thobel, J. -L. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (09)
[9]   Thermal and stark-effect roll-over of quantum-cascade lasers [J].
Howard, Scott S. ;
Liu, Zhijun ;
Gmachl, Claire F. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (3-4) :319-323
[10]   Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers [J].
Jovanovic, V. D. ;
Hoefling, S. ;
Indjin, D. ;
Vukmirovic, N. ;
Ikonic, Z. ;
Harrison, P. ;
Reithmaier, J. P. ;
Forchel, A. .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (10)