Energy Management of a Hybrid Tidal Turbine-Hydrogen Micro-Grid: Losses Minimization Strategy

被引:14
作者
Barakat, M. [1 ]
Tala-Ighil, B. [1 ]
Chaoui, H. [2 ]
Gualous, H. [1 ]
Hissel, D. [3 ]
机构
[1] Caen Normandy Univ, UNICAEN, LUSAC EA 4253, 60 Rue Max Pol Fouchet,CS 20082, F-50130 Cherbourg En Cotentin, France
[2] Carleton Univ, Dept Elect, Ottawa, ON K1S 5B6, Canada
[3] Univ Bourgogne Franche Comte, FEMTO ST, FCLAB, CNRS, Rue Thierry Mieg, F-90010 Belfort, France
关键词
Permanent Magnet Synchronous Generator; Proton Exchange Membrane Electrolyzer; Tidal Energy Converter; SYSTEM;
D O I
10.1002/fuce.201900082
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper presents the modeling and energy management system (EMS) of a hybrid marine-hydrogen power generation system. The proposed system aims to convert the static nature of the tidal energy into an active system by using a hydrogen energy storage system. The system of the tidal energy converter (TEC) considers the fixed pitch direct drive technology while the hydrogen system consists of 1.0 MW (megawatt) proton exchange membrane electrolyzer. A MATLAB/Simulink based model has been developed for studying and evaluating the effectiveness of the proposed EMS. The developed model depends on scaling up a 50 W proton exchange membrane (PEM) electrolyzer model to 1 MW scale by adapting the model parameters for providing the same key performance indicators (KPIs). The EMS aims to convert all the TEC generated energy into hydrogen with considering the efficient and safe operation of the different system components. Thus, the loss minimization (efficiency maximization) of the tidal turbine generator is integrated as one of the EMS goals to evaluate its effect on hydrogen production. The generator of the TEC is controlled by two different strategies for estimating the surplus hydrogen that could be produced. The strategies are the maximum torque/ampere and the loss minimization.
引用
收藏
页码:342 / 350
页数:9
相关论文
共 28 条
[11]  
European Marine Energy Center ITEG, ITEG INT EN EUR GRID
[12]   Optimal scheduling in a microgrid with a tidal generation [J].
Faridnia, N. ;
Habibi, D. ;
Lachowicz, S. ;
Kavousifard, A. .
ENERGY, 2019, 171 :435-443
[13]  
Harvey R., 2016, PEM ELECTROLYSIS HYD, P303
[14]   Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices [J].
Javidsharifi, Mahshid ;
Niknam, Taher ;
Aghaei, Jamshid ;
Mokryani, Geev .
APPLIED ENERGY, 2018, 216 :367-381
[15]   Sensorless output maximization control for variable-speed wind generation system using IPMSG [J].
Morimoto, S ;
Nakayama, H ;
Sanada, M ;
Takeda, Y .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2005, 41 (01) :60-67
[16]   LOSS MINIMIZATION CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR-DRIVES [J].
MORIMOTO, S ;
TONG, Y ;
TAKEDA, Y ;
HIRASA, T .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1994, 41 (05) :511-517
[17]  
Offshore Renewable Energy (ORE), 2015, CAT WAV TID EN YIELD
[18]  
Pennanen J., 2015, 3 RES SEM 2015
[19]  
Pitschak B., 2016, HYDROGEN FUEL CELL T, P187
[20]  
Smolinka T., 2016, PEM Electrolysis for Hydrogen Production: Principles and Applications, P11