Charge storage mechanism of α-MnO2 in protic and aprotic ionic liquid electrolytes

被引:19
作者
Lindberg, S. [1 ]
Jeschke, S. [1 ]
Jankowski, P. [5 ,6 ]
Abdelhamid, M. [3 ]
Brousse, T. [2 ,4 ]
Le Bideau, J. [2 ,4 ]
Johansson, P. [1 ]
Matic, A. [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Univ Nantes, Inst Mat Jean Rouxel, CNRS, UMR 6502, F-44322 Nantes 3, France
[3] Uppsala Univ, Angstrom Lab, Dept Chem, Box 538, S-75121 Uppsala, Sweden
[4] CNRS FR 3459, Reseau Stockage Electrochim Energie, F-80039 Amiens, France
[5] Tech Univ Denmark, Dept Energy Convers & Storage, DK-2800 Lyngby, Denmark
[6] Warsaw Univ Technol, Fac Chem, PL-00664 Warsaw, Poland
关键词
MnO2; Protic; Ionic liquid; Hybrid; Supercapacitor; COSMO-RS; MNO2; ENERGY; APPROXIMATION; ELECTRODES; PK(A);
D O I
10.1016/j.jpowsour.2020.228111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we have investigated the charge storage mechanism of MnO2 electrodes in ionic liquid electrolytes. We show that by using an ionic liquid with a cation that has the ability to form hydrogen bonds with the active material (MnO2) on the surface of the electrode, a clear faradaic contribution is obtained. This situation is found for ionic liquids with cations that have a low pKa, i.e. protic ionic liquids. For a protic ionic liquid, the specific capacity at low scan rate rates can be explained by a densely packed layer of cations that are in a standing geometry, with a proton directly interacting through a hydrogen bond with the surface of the active material in the electrode. In contrast, for aprotic ionic liquids there is no interaction and only a double layer contribution to the charge storage is observed. However, by adding an alkali salt to the aprotic ionic liquid, a faradaic contribution is obtained from the insertion of Li+ into the surface of the MnO2 electrode. No effect can be observed when Li+ is added to the protic IL, suggesting that a densely packed cation layer in this case prevent Li-ions from reaching the active material surface.
引用
收藏
页数:8
相关论文
共 40 条
  • [1] Designing a Safe Electrolyte Enabling Long-Life Li/S Batteries
    Agostini, Marco
    Sadd, Matthew
    Xiong, Shizhao
    Cavallo, Carmen
    Heo, Jungwon
    Ahn, Jou Hyeon
    Matic, Aleksandar
    [J]. CHEMSUSCHEM, 2019, 12 (18) : 4176 - 4184
  • [2] ELECTRONIC-STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS - THE PROGRAM SYSTEM TURBOMOLE
    AHLRICHS, R
    BAR, M
    HASER, M
    HORN, H
    KOLMEL, C
    [J]. CHEMICAL PHYSICS LETTERS, 1989, 162 (03) : 165 - 169
  • [3] Acidic Ionic Liquids
    Amarasekara, Ananda S.
    [J]. CHEMICAL REVIEWS, 2016, 116 (10) : 6133 - 6183
  • [4] Formation and stability of N-heterocyclic carbenes in water:: The carbon acid pKa of imidazollum cations in aqueous solution
    Amyes, TL
    Diver, ST
    Richard, JP
    Rivas, FM
    Toth, K
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (13) : 4366 - 4374
  • [5] [Anonymous], 2015, TURBOMOLE
  • [6] Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
  • [7] A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices
    Balducci, A.
    Belanger, D.
    Brousse, T.
    Long, J. W.
    Sugimoto, W.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (07) : A1487 - A1488
  • [8] DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR
    BECKE, AD
    [J]. PHYSICAL REVIEW A, 1988, 38 (06): : 3098 - 3100
  • [9] Bélanger D, 2008, ELECTROCHEM SOC INTE, V17, P49
  • [10] ELECTROCHEMICAL-BEHAVIOR OF MNO2 ELECTRODES IN SULFURIC-ACID-SOLUTIONS
    BODOARDO, S
    BRENET, J
    MAJA, M
    SPINELLI, P
    [J]. ELECTROCHIMICA ACTA, 1994, 39 (13) : 1999 - 2004