Noise suppresses or expresses exponential growth

被引:74
作者
Deng, Feiqi [2 ]
Luo, Qi [3 ]
Mao, Xuerong [1 ]
Pang, Sulin [4 ,5 ]
机构
[1] Univ Strathclyde, Dept Stat & Modelling Sci, Glasgow G1 1XH, Lanark, Scotland
[2] S China Univ Technol, Syst Engn Inst, Guangzhou 510640, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Dept Informat & Commun, Nanjing, Peoples R China
[4] Jinan Univ, Sch Management, Dept Accountancy, Guangzhou 510632, Peoples R China
[5] Jinan Univ, Sch Management, Inst Finance Engn, Guangzhou 510632, Peoples R China
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
Brownian motion; stochastic differential equation; stochastic control; exponential growth; polynomial growth; boundedness;
D O I
10.1016/j.sysconle.2007.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we will show that noise can make a given system whose solutions grow exponentially become a new system whose solutions will grow at most polynomially. On the other hand, we will also show that noise can make a given system whose solutions are bounded become a new system whose solutions will grow exponentially. In other words, we reveal that the noise can suppress or expresses exponential growth. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 20 条
[1]  
Appleby JAD, 2006, DISCRETE CONT DYN-A, V15, P843
[2]   Stochastic stabilisation of functional differential equations [J].
Appleby, JAD ;
Mao, XR .
SYSTEMS & CONTROL LETTERS, 2005, 54 (11) :1069-1081
[3]  
APPLEBY JAD, IN PRESS J APPL MATH
[4]  
APPLEBY JAD, IN PRESS SYSTEMS CON
[5]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[6]  
Arnold L., 1998, Springer Monographs in Mathematics
[7]   STABILITY OF FAST PERIODIC-SYSTEMS [J].
BELLMAN, R ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :289-291
[8]   Stochastic stabilization of differential systems with general decay rate [J].
Caraballo, T ;
Garrido-Atienza, MJ ;
Real, J .
SYSTEMS & CONTROL LETTERS, 2003, 48 (05) :397-406
[9]  
Hasminskii R., 1981, STOCHASTIC STABILITY