Adiabatic charge pumping in open quantum systems

被引:18
作者
Avron, JE [1 ]
Elgart, A
Graf, GM
Sadun, L
Schnee, K
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] ETH Honggerberg, CH-8093 Zurich, Switzerland
[4] Univ Texas, Dept Math, Austin, TX 78712 USA
[5] ETH, CH-8093 Zurich, Switzerland
关键词
D O I
10.1002/cpa.3051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a mathematical setup for charge transport in quantum pumps connected to a number of external leads. It is proven that under the rather general assumption on the Hamiltonian describing the system, in the adiabatic limit, the current through the pump is given by a formula of Buttiker, Pretre, and Thomas, relating it to the frozen S matrix and its time derivative. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:528 / 561
页数:34
相关论文
共 25 条
[1]   Adiabatic charge pumping in almost open dots [J].
Aleiner, IL ;
Andreev, AV .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1286-1289
[2]  
Amrein W. O., 1996, Progress in Mathematics, V135
[3]  
[Anonymous], MATH MONOGRAPHS
[4]  
[Anonymous], SPECTRAL THEORY DIFF
[5]   Optimal quantum pumps [J].
Avron, JE ;
Elgart, A ;
Graf, GM ;
Sadun, L .
PHYSICAL REVIEW LETTERS, 2001, 87 (23) :236601-1
[6]   Time-energy coherent states and adiabatic scattering [J].
Avron, JE ;
Elgart, A ;
Graf, GM ;
Sadun, L .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (07) :3415-3424
[7]   Adiabatic theorem without a gap condition [J].
Avron, JE ;
Elgart, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 203 (02) :445-463
[8]  
Bornemann F., 1998, LECT NOTES MATH, V1687
[9]   Scattering approach to parametric pumping [J].
Brouwer, PW .
PHYSICAL REVIEW B, 1998, 58 (16) :10135-10138
[10]   CURRENT PARTITION IN MULTIPROBE CONDUCTORS IN THE PRESENCE OF SLOWLY OSCILLATING EXTERNAL POTENTIALS [J].
BUTTIKER, M ;
THOMAS, H ;
PRETRE, A .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 94 (1-2) :133-137