Stochastic estimation of biogeochemical parameters of a 3D ocean coupled physical-biogeochemical model: Twin experiments

被引:26
|
作者
Doron, Maeva [1 ]
Brasseur, Pierre [1 ]
Brankart, Jean-Michel [1 ]
机构
[1] CNRS, LEGI, Grenoble, France
关键词
Kalman filter; Stochastic methods; Biogeochemical model; Parameter estimation; 3D Ocean model; Data assimilation; North Atlantic; DATA ASSIMILATION; NORTH-ATLANTIC; ECOSYSTEM MODEL; SKILL ASSESSMENT; KALMAN FILTERS; PHYTOPLANKTON; IRON; SEA;
D O I
10.1016/j.jmarsys.2011.04.001
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In a 3D ocean coupled physical-biogeochemical model, implemented on the North Atlantic at 1/4 and including six biogeochemical variables, three parameters (phytoplankton maximal growth rate, phytoplankton mortality rate and zooplankton maximal grazing rate) are assumed to be stochastic and have regional variations. Ensemble simulations (200 members, lasting 30 days during the spring bloom) show that the phytoplankton concentration is sensitive to the parameterization, with strong spatial heterogeneity, combined to a nonlinear and non-Gaussian behavior. Within the Kalman filter theory, parameter estimation can be done, in the framework of optimal estimate with Gaussian assumptions and reduced rank approximation, when the state vector is augmented with the uncertain parameters. Twin data assimilation experiments, using surface phytoplankton as observations, were performed either in the linear framework or introducing a nonlinear local transformation (anamorphosis). The anamorphosis is performed using a piecewise linear change of variables (applied to all biogeochemical quantities) remapping the percentiles of the empirical marginal distribution provided by the ensemble on the percentiles of the Gaussian distribution. Nonlinear parameter estimation performed better than linear estimation: on the 39 estimated parameters. there is a reduction in the variance obtained with the nonlinear analysis, compared to the variance obtained with the linear analysis, except for 2 parameters. The reduction is better than 60% in 80% of these cases. The anamorphosis is also useful to define an objective error norm for the biogeochemical variables. (C) 2011 Elsevier BM. All rights reserved.
引用
收藏
页码:194 / 207
页数:14
相关论文
共 32 条
  • [1] Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3D ocean coupled physical-biogeochemical model
    Doron, Maeva
    Brasseur, Pierre
    Brankart, Jean-Michel
    Losa, Svetlana N.
    Melet, Angelique
    JOURNAL OF MARINE SYSTEMS, 2013, 117 : 81 - 95
  • [2] Assessment of a regional physical-biogeochemical stochastic ocean model. Part 1: Ensemble generation
    Vervatis, Vassilios D.
    De Mey-Fremaux, Pierre
    Ayoub, Nadia
    Karagiorgos, John
    Ghantous, Malek
    Kailas, Marios
    Testut, Charles-Emmanuel
    Sofianos, Sarantis
    OCEAN MODELLING, 2021, 160
  • [3] Estimation of Ocean Biogeochemical Parameters in an Earth System Model Using the Dual One Step Ahead Smoother: A Twin Experiment
    Singh, Tarkeshwar
    Counillon, Francois
    Tjiputra, Jerry
    Wang, Yiguo
    Gharamti, Mohamad El
    FRONTIERS IN MARINE SCIENCE, 2022, 9
  • [4] On the key role of nutrient data to constrain a coupled physical-biogeochemical assimilative model of the North Atlantic Ocean
    Ourmieres, Yann
    Brasseur, Pierre
    Levy, Marina
    Brankart, Jean-Michel
    Verron, Jacques
    JOURNAL OF MARINE SYSTEMS, 2009, 75 (1-2) : 100 - 115
  • [5] Assimilation of SeaWiFS chlorophyll data into a 3D-coupled physical-biogeochemical model applied to a freshwater-influenced coastal zone
    Fontana, Clement
    Grenz, Christian
    Pinazo, Christel
    Marsaleix, Patrick
    Diaz, Frederic
    CONTINENTAL SHELF RESEARCH, 2009, 29 (11-12) : 1397 - 1409
  • [6] Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 1-Model formulation and biological data assimilation twin experiments
    Song, Hajoon
    Edwards, Christopher A.
    Moore, Andrew M.
    Fiechter, Jerome
    OCEAN MODELLING, 2016, 106 : 131 - 145
  • [7] Improving the physics of a coupled physical-biogeochemical model of the North Atlantic through data assimilation:: Impact on the ecosystem
    Berline, Leo
    Brankart, Jean-Michel
    Brasseur, Pierre
    Ourmieres, Yann
    Verron, Jacques
    JOURNAL OF MARINE SYSTEMS, 2007, 64 (1-4) : 153 - 172
  • [8] On the Role of Temperature and Salinity Data Assimilation to Constrain a Coupled Physical-Biogeochemical Model in the Baltic Sea
    Fu, Weiwei
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2016, 46 (03) : 713 - 729
  • [9] Assimilating GlobColour ocean colour data into a pre-operational physical-biogeochemical model
    Ford, D. A.
    Edwards, K. P.
    Lea, D.
    Barciela, R. M.
    Martin, M. J.
    Demaria, J.
    OCEAN SCIENCE, 2012, 8 (05) : 751 - 771
  • [10] Data assimilation in a coupled physical-biogeochemical model of the California Current System using an incremental lognormal 4-dimensional variational approach: Part 2-Joint physical and biological data assimilation twin experiments
    Song, Hajoon
    Edwards, Christopher A.
    Moore, Andrew M.
    Fiechter, Jerome
    OCEAN MODELLING, 2016, 106 : 146 - 158