Mechanistic Origin of the High Performance of Yolk@Shell Bi2S3@N-Doped Carbon Nanowire Electrodes

被引:241
作者
Zhao, Longze [1 ,2 ]
Wu, Hong-Hui [3 ]
Yang, Chenghao [4 ]
Zhang, Qiaobao [1 ,2 ]
Zhong, Guiming [5 ]
Zheng, Zhiming [1 ,2 ]
Chen, Huixin [5 ]
Wang, Jinming [1 ,2 ]
He, Kai [8 ]
Wang, Baolin [6 ]
Zhu, Ting [6 ,7 ]
Zeng, Xiao Cheng [3 ]
Liu, Meilin [7 ]
Wang, Ming-Sheng [1 ,2 ]
机构
[1] Xiamen Univ, Coll Mat, Dept Mat Sci & Engn, Xiamen 361005, Fujian, Peoples R China
[2] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Fujian, Peoples R China
[3] Univ Nebraska Lincoln, Dept Chem, Lincoln, NE 68588 USA
[4] South China Univ Technol, Sch Environm & Energy, New Energy Res Inst, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
[5] Chinese Acad Sci, Haixi Inst, Xiamen Inst Rare Earth Mat, Xiamen 361024, Peoples R China
[6] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[8] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
lithium-ion battery; lithiation mechanism; yolk@shell composite anode; in situ experiments; multiple computational modeling; LITHIUM-ION BATTERIES; FLOWER-LIKE BI2S3; ELECTROCHEMICAL LITHIATION; HIGH-CAPACITY; ANODE MATERIALS; DELITHIATION; ENERGY; NANOPARTICLES; MICROSCOPY; ROBUST;
D O I
10.1021/acsnano.8b07319
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-performance lithium-ion batteries are commonly built with heterogeneous composite electrodes that combine multiple active components for serving various electrochemical and structural functions. Engineering these heterogeneous composite electrodes toward drastically improved battery performance is hinged on a fundamental understanding of the mechanisms of multiple active components and their synergy or trade-off effects. Herein, we report a rational design, fabrication, and understanding of yolk@shell Bi2S3@N-doped mesoporous carbon (C) composite anode, consisting of a Bi2S3 nanowire (NW) core within a hollow space surrounded by a thin shell of N-doped mesoporous C. This composite anode exhibits desirable rate performance and long cycle stability (700 cycles, 501 mAhg(-1) at 1.0 Ag-1, 85% capacity retention). By in situ transmission electron microscopy (TEM), X-ray diffraction, and NMR experiments and computational modeling, we elucidate the dominant mechanisms of the phase transformation, structural evolution, and lithiation kinetics of the Bi2S3 NWs anode. Our combined in situ TEM experiments and finite element simulations reveal that the hollow space between the Bi2S3 NWs core and carbon shell can effectively accommodate the lithiation-induced expansion of Bi2S3 NWs without cracking C shells. This work demonstrates an effective strategy of engineering the yolk@shell-architectured anodes and also sheds light onto harnessing the complex multistep reactions in metal sulfides to enable high-performance lithium-ion batteries.
引用
收藏
页码:12597 / 12611
页数:15
相关论文
共 67 条
[1]  
[Anonymous], 1981, P IUTAM S FINITE ELA
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   In situ tem investigation on ultrafast reversible lithiation and delithiation cycling of Sn@C yolk-shell nanoparticles as anodes for lithium ion batteries [J].
Cao, Ke ;
Li, Peifeng ;
Zhang, Yizhi ;
Chen, Tianwu ;
Wang, Xu ;
Zhang, Sulin ;
Liu, Jiabin ;
Wang, Hongtao .
NANO ENERGY, 2017, 40 :187-194
[4]   Intercalation of Bi nanoparticles into graphite results in an ultra-fast and ultra-stable anode material for sodium-ion batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Ji, Xiao ;
Gao, Tao ;
Hou, Singyuk ;
Zhou, Xiuquan ;
Wang, Luning ;
Wang, Fei ;
Yang, Chongyin ;
Chen, Long ;
Wang, Chunsheng .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (05) :1218-1225
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   In Situ Transmission Electron Microscopy Study of Electrochemical Lithiation and Delithiation Cycling of the Conversion Anode RuO2 [J].
Gregorczyk, Keith E. ;
Liu, Yang ;
Sullivan, John P. ;
Rubloff, Gary W. .
ACS NANO, 2013, 7 (07) :6354-6360
[7]   Enhancing sodium ionic conductivity in tetragonal-Na3PS4 by halogen doping: a first principles investigation [J].
Huang, He ;
Wu, Hong-Hui ;
Wang, Xinjiang ;
Huang, Baoling ;
Zhang, Tong-Yi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (31) :20525-20533
[8]   In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode [J].
Huang, Jian Yu ;
Zhong, Li ;
Wang, Chong Min ;
Sullivan, John P. ;
Xu, Wu ;
Zhang, Li Qiang ;
Mao, Scott X. ;
Hudak, Nicholas S. ;
Liu, Xiao Hua ;
Subramanian, Arunkumar ;
Fan, Hongyou ;
Qi, Liang ;
Kushima, Akihiro ;
Li, Ju .
SCIENCE, 2010, 330 (6010) :1515-1520
[9]   Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries [J].
Huang, S. ;
Fan, F. ;
Li, J. ;
Zhang, S. ;
Zhu, T. .
ACTA MATERIALIA, 2013, 61 (12) :4354-4364
[10]   CP2K: atomistic simulations of condensed matter systems [J].
Hutter, Juerg ;
Iannuzzi, Marcella ;
Schiffmann, Florian ;
VandeVondele, Joost .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2014, 4 (01) :15-25