Intermodel disagreement of myocardial blood flow estimation from dynamic CT perfusion imaging

被引:16
作者
van Assen, Manly [1 ,2 ]
Pelgrim, Gert Jan [2 ]
de Cecco, Carlo N. [1 ,4 ]
Stijnen, J. Marco A. [3 ]
Zaki, Beatrice M. [1 ]
Oudkerk, Matthijs [2 ]
Vliegenthart, Rozemarijn [1 ,2 ]
Schoepf, U. Joseph [1 ]
机构
[1] Med Univ South Carolina, Dept Radiol & Radiol Sci, Div Cardiovasc Imaging, 25 Courtenay Dr, Charleston, SC 29425 USA
[2] Univ Groningen, Ctr Med Imaging, Univ Med Ctr Groningen, Groningen, Netherlands
[3] LifeTec Grp, Eindhoven, Netherlands
[4] Emory Univ Hosp, Div Cardiothorac Imaging Nucl Med & Mol Imaging, Dept Radiol & Imaging Sci, 1364 Clifton Rd NE, Atlanta, GA 30322 USA
关键词
Computed tomography; Perfusion imaging; Myocardium; Tracer kinetic models; GLOBAL QUANTIFICATION; ACCURACY; ABSOLUTE;
D O I
10.1016/j.ejrad.2018.11.029
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To assess the intermodel agreement of different tracer kinetic models to determine myocardial blood flow (MBF) and their diagnostic accuracy in coronary artery disease (CAD) at dynamic CT myocardial perfusion imaging (CTMPI). Methods: Three porcine hearts perfused in Langendorff mode and 15 patients with suspected CAD and perfusion single photon emission CT (SPECT) were included. Dynamic CTMPI was performed in shuffle-mode (70 kVp, 350mAs/rot) on 3rd generation dual-source CT. In porcine hearts and patients, myocardial segments (AHA-16-segment model) were drawn. Tissue attenuation curves were constructed per segment and arterial input functions were derived from the aorta. True MBF was calculated with input flow and weight of the porcine hearts. In patients, ischemic segments were based on SPECT results. MBF quantification was performed using the VPCT-software, Upslope, Extended Toft (ET), Two-compartment (TC) and Fermi models. Results: In porcine hearts, true MBF was 1.88 (interquartile range [IQR]:1.80-2.80)mL/g/min. Diagnostic accuracy was similar for all models: 0.96, 0.99, 0.92, 0.93 and 0.96 for VPCT software, Upslope method, Fermi, ET and TC model. The VPCT software and Upslope method resulted in lower MBF (median 1.44 [1.29-1.58] and 1.39 [1.25-1.59]mL/g/min) compared to the Fermi, ET, and TC model (median values of 1.76 mL/g/min [1.36-2.44], 2.55 mL/g/min [2.20-2.92], and 1.98 mL/g/min [1.60-2.60], respectively [p < 0.001]). In patients, all models showed a significant difference in MBF between the 34 ischemic and 206 non-ischemic segments (p-value < 0.001). Conclusion: Absolute MBF values are significantly different between the models and a uniform threshold could not be determined; however, diagnostic accuracy for detecting ischemia is similar.
引用
收藏
页码:175 / 180
页数:6
相关论文
共 32 条
[11]   Intermodel Agreement of Myocardial Blood Flow Estimation From Stress-Rest Myocardial Perfusion Magnetic Resonance Imaging in Patients With Coronary Artery Disease [J].
Handayani, Astri ;
Triadyaksa, Pandji ;
Dijkstra, Hildebrand ;
Pelgrim, Gert Jan ;
van Ooijen, Peter M. A. ;
Prakken, Niek H. J. ;
Schoepf, U. Joseph ;
Oudkerk, Matthijs ;
Vliegenthart, Rozemarijn ;
Sijens, Paul E. .
INVESTIGATIVE RADIOLOGY, 2015, 50 (04) :275-282
[12]   Tracer-kinetic modeling of dynamic contrast-enhanced MRI and CT: a primer [J].
Ingrisch, Michael ;
Sourbron, Steven .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2013, 40 (03) :281-300
[13]   Underestimation of myocardial blood flow by dynamic perfusion CT: Explanations by two-compartment model analysis and limited temporal sampling of dynamic CT [J].
Ishida, Masaki ;
Kitagawa, Kakuya ;
Ichihara, Takashi ;
Natsume, Takahiro ;
Nakayama, Ryohei ;
Nagasawa, Naoki ;
Kubooka, Makiko ;
Ito, Tatsuro ;
Uno, Mio ;
Goto, Yoshitaka ;
Nagata, Motonori ;
Sakuma, Hajime .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (03) :207-214
[14]   Quantification of myocardial perfusion by cardiovascular magnetic resonance [J].
Jerosch-Herold, Michael .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2010, 12
[15]   Clinical Value of Absolute Quantification of Myocardial Perfusion With 15O-Water in Coronary Artery Disease [J].
Kajander, Sami A. ;
Joutsiniemi, Esa ;
Saraste, Markku ;
Pietila, Mikko ;
Ukkonen, Heikki ;
Saraste, Antti ;
Sipila, Hannu T. ;
Teras, Mika ;
Maki, Maija ;
Airaksinen, Juhani ;
Hartiala, Jaakko ;
Knuuti, Juhani .
CIRCULATION-CARDIOVASCULAR IMAGING, 2011, 4 (06) :678-684
[16]   Normal range and regional heterogeneity of myocardial perfusion in healthy human myocardium: assessment on dynamic perfusion CT using 128-slice dual-source CT [J].
Kim, Eun Young ;
Chung, Wook-Jin ;
Sung, Yon Mi ;
Byun, Sung Su ;
Park, Jae Hyung ;
Kim, Jeong Ho ;
Moon, Jeonggeun .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2014, 30 :33-40
[17]  
Koh TS, 2010, P INT SOC MAG RESON, P1
[18]   Functional CT: physiological models [J].
Lee, Ting-Yim .
TRENDS IN BIOTECHNOLOGY, 2002, 20 (08) :S3-S10
[19]   Global quantification of left ventricular myocardial perfusion at dynamic CT imaging: Prognostic value [J].
Meinel, Felix G. ;
Wichmann, Julian L. ;
Schoepf, U. Joseph ;
Pugliese, Francesca ;
Ebersberger, Ullrich ;
Lo, Gladys G. ;
Choe, Yeon Hyeon ;
Wang, Yining ;
Tesche, Christian ;
Segreto, Sabrina ;
Kunz, Wolfgang G. ;
Thierfelder, Kolja M. ;
Bamberg, Fabian ;
De Cecco, Carlo N. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2017, 11 (01) :16-24
[20]   Quantitative Myocardial Perfusion with Dynamic Contrast-Enhanced Imaging in MRI and CT: Theoretical Models and Current Implementation [J].
Pelgrim, G. J. ;
Handayani, A. ;
Dijkstra, H. ;
Prakken, N. H. J. ;
Slart, R. H. J. A. ;
Oudkerk, M. ;
Van Ooijen, P. M. A. ;
Vliegenthart, R. ;
Sijens, P. E. .
BIOMED RESEARCH INTERNATIONAL, 2016, 2016