Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction

被引:50
作者
Panova, Ouliana [1 ,2 ]
Chen, X. Chelsea [3 ,4 ]
Bustillo, Karen C. [2 ]
Ophus, Colin [2 ]
Bhatt, Mahesh P. [4 ,5 ]
Balsara, Nitash [3 ,4 ,5 ]
Minor, Andrew M. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA
[5] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA USA
关键词
TEM; STEM; Spatially resolved; Diffraction; Crystal orientation; P3HT; Polymers; Locally resolved structure; STRUCTURAL FEATURES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; MOLECULAR-WEIGHT; THIN-FILMS; POLY(3-HEXYLTHIOPHENE); MICROSCOPY; P3HT; POLY(3-ALKYLTHIOPHENES); MICROSTRUCTURE;
D O I
10.1016/j.micron.2016.05.008
中图分类号
TH742 [显微镜];
学科分类号
摘要
We demonstrate a scanning electron nanobeam diffraction technique that can be used for mapping the size and distribution of nanoscale crystalline regions in a polymer blend. In addition, it can map the relative orientation of crystallites and the degree of crystallinity of the material. The model polymer blend is a 50:50 w/w mixture of semicrystalline poly(3-hexylthiophene-2,5-diyl) (P3HT) and amorphous polystyrene (PS). The technique uses a scanning electron beam to raster across the sample and acquires a diffraction image at each probe position. Through image alignment and filtering, the diffraction image dataset enables mapping of the crystalline regions within the scanned area and construction of an orientation map. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [31] The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy
    Garner, A.
    Gholinia, A.
    Frankel, P.
    Gass, M.
    MacLaren, I.
    Preuss, M.
    ACTA MATERIALIA, 2014, 80 : 159 - 171
  • [32] Elemental mapping in scanning transmission electron microscopy
    Allen, L. J.
    D'Alfonso, A. J.
    Findlay, S. D.
    LeBeau, J. M.
    Lugg, N. R.
    Stemmer, S.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
  • [33] Electron crystallography on beam sensitive materials - Electron microscopy and electron diffraction of polymers
    Tsuji, M
    Electron Crystallography: Novel Approaches for Structure Determination of Nanosized Materials, 2006, 211 : 455 - 472
  • [34] Automated Orientation and Diffraction Intensity (AODI) Mapping on a Curved Surface
    Pan, Cheng
    Wang, Zhijun
    Gao, Xingyu
    CRYSTALS, 2025, 15 (03)
  • [35] Microstructural analysis of Greenland ice using a cryogenic scanning electron microscope equipped with an electron backscatter diffraction detector
    Shigeyama, Wataru
    Nagatsuka, Naoko
    Homma, Tomoyuki
    Takata, Morimasa
    Goto-Azuma, Kumiko
    Weikusat, Ilka
    Drury, Martyn R.
    Kuiper, Ernst-Jan N.
    Mateiu, Ramona, V
    Azuma, Nobuhiko
    Dahl-Jensen, Dorthe
    Kipfstuhl, Sepp
    BULLETIN OF GLACIOLOGICAL RESEARCH, 2019, 37 : 31 - 45
  • [36] Decoding Material Structures with Scanning Electron Diffraction Techniques
    Yoon, Sangmoon
    CRYSTALS, 2024, 14 (03)
  • [37] Can the Structures of Semicrystalline Polymers be Controlled Using Interfacial Crystallographic Interactions?
    Zhou, Haixin
    Yan, Shouke
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2013, 214 (06) : 639 - 653
  • [38] The scanning low-energy electron microscope:: First attainment of diffraction contrast in the scanning electron microscope
    Frank, L
    Müllerova, I
    Faulian, K
    Bauer, E
    SCANNING, 1999, 21 (01) : 1 - 13
  • [40] Rapid electron backscatter diffraction mapping: Painting by numbers
    Tong, Vivian S.
    Knowles, Alexander J.
    Dye, David
    Ben Britton, T.
    MATERIALS CHARACTERIZATION, 2019, 147 : 271 - 279