Orientation mapping of semicrystalline polymers using scanning electron nanobeam diffraction

被引:50
|
作者
Panova, Ouliana [1 ,2 ]
Chen, X. Chelsea [3 ,4 ]
Bustillo, Karen C. [2 ]
Ophus, Colin [2 ]
Bhatt, Mahesh P. [4 ,5 ]
Balsara, Nitash [3 ,4 ,5 ]
Minor, Andrew M. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Natl Ctr Electron Microscopy, Berkeley, CA USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA
[5] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, Berkeley, CA USA
关键词
TEM; STEM; Spatially resolved; Diffraction; Crystal orientation; P3HT; Polymers; Locally resolved structure; STRUCTURAL FEATURES; CRYSTAL-STRUCTURE; RADIATION-DAMAGE; MOLECULAR-WEIGHT; THIN-FILMS; POLY(3-HEXYLTHIOPHENE); MICROSCOPY; P3HT; POLY(3-ALKYLTHIOPHENES); MICROSTRUCTURE;
D O I
10.1016/j.micron.2016.05.008
中图分类号
TH742 [显微镜];
学科分类号
摘要
We demonstrate a scanning electron nanobeam diffraction technique that can be used for mapping the size and distribution of nanoscale crystalline regions in a polymer blend. In addition, it can map the relative orientation of crystallites and the degree of crystallinity of the material. The model polymer blend is a 50:50 w/w mixture of semicrystalline poly(3-hexylthiophene-2,5-diyl) (P3HT) and amorphous polystyrene (PS). The technique uses a scanning electron beam to raster across the sample and acquires a diffraction image at each probe position. Through image alignment and filtering, the diffraction image dataset enables mapping of the crystalline regions within the scanned area and construction of an orientation map. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:30 / 36
页数:7
相关论文
共 50 条
  • [1] Versatile domain mapping of scanning electron nanobeam diffraction datasets utilising variational autoencoders
    A. Bridger
    W. I. F. David
    T. J. Wood
    M. Danaie
    K. T. Butler
    npj Computational Materials, 9
  • [2] Versatile domain mapping of scanning electron nanobeam diffraction datasets utilising variational autoencoders
    Bridger, A.
    David, W. I. F.
    Wood, T. J.
    Danaie, M.
    Butler, K. T.
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [3] Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope
    Trimby, Patrick W.
    ULTRAMICROSCOPY, 2012, 120 : 16 - 24
  • [4] Mapping Polar Distortions using Nanobeam Electron Diffraction and a Cepstral Approach
    Holtz, Megan E.
    Padgett, Elliot
    Johnston-Peck, Aaron C.
    Levin, Igor
    Muller, David A.
    Herzing, Andrew A.
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (04) : 1422 - 1435
  • [6] Transmission Kikuchi Diffraction in the Scanning Electron Microscope: Orientation Mapping on the Nanoscale
    Trimby, Patrick W.
    Cairney, Julie M.
    ADVANCED MATERIALS & PROCESSES, 2014, 172 (02): : 13 - 15
  • [7] Charging of deformed semicrystalline polymers observed with a scanning electron microscope
    Gong, H
    Chooi, KM
    Ong, CK
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 1995, 2 (06) : 1123 - 1131
  • [8] Quantitative Strain and Topography Mapping of 2D Materials Using Nanobeam Electron Diffraction
    Sickel, Julian
    Asbach, Marcel
    Gammer, Christoph
    Bratschitsch, Rudolf
    Kohl, Helmut
    MICROSCOPY AND MICROANALYSIS, 2022, 28 (03) : 701 - 715
  • [9] Optimizing disk registration algorithms for nanobeam electron diffraction strain mapping
    Pekin, Thomas C.
    Gammer, Christoph
    Ciston, Jim
    Minor, Andrew M.
    Ophus, Colin
    ULTRAMICROSCOPY, 2017, 176 : 170 - 176
  • [10] Observation of latent ion tracks in semicrystalline polymers by scanning electron microscopy
    Blonskaya, Irina V.
    Kristavchuk, Olga V.
    Nechaev, Alexandr N.
    Orelovich, Oleg L.
    Polezhaeva, Olga A.
    Apel, Pavel Y.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (08)