Flexibility, Diversity, and Cooperativity: Pillars of Enzyme Catalysis

被引:207
作者
Hammes, Gordon G. [2 ]
Benkovic, Stephen J. [1 ]
Hammes-Schiffer, Sharon [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] Duke Univ, Dept Biochem, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
DIHYDROFOLATE-REDUCTASE CATALYSIS; ASPARTATE-AMINOTRANSFERASE; ESCHERICHIA-COLI; HYDRIDE TRANSFER; ENERGY LANDSCAPE; SINGLE-MOLECULE; PROTEIN MOTION; MECHANISM; KINETICS; MUTATION;
D O I
10.1021/bi201486f
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This brief review discusses our current understanding of the molecular basis of enzyme catalysis. A historical development is presented, beginning with steady state kinetics and progressing through modern fast reaction methods, nuclear magnetic resonance, and single-molecule fluorescence techniques. Experimental results are summarized for ribonuclease, aspartate aminotransferase, and especially dihydrofolate reductase (DHFR). Multiple intermediates, multiple conformations, and cooperative conformational changes are shown to be an essential part of virtually all enzyme mechanisms. In the case of DHFR, theoretical investigations have provided detailed information about the movement of atoms within the enzyme-substrate complex as the reaction proceeds along the collective reaction coordinate for hydride transfer. A general mechanism is presented for enzyme catalysis that includes multiple intermediates and a complex, multidimensional standard free energy surface. Protein flexibility, diverse protein conformations, and cooperative conformational changes are important features of this model.
引用
收藏
页码:10422 / 10430
页数:9
相关论文
共 45 条
[1]   Catalysis by dihydrofolate reductase and other enzymes arises from electrostatic preorganization, not conformational motions [J].
Adamczyk, Andrew J. ;
Cao, Jie ;
Kamerlin, Shina C. L. ;
Warshel, Arieh .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (34) :14115-14120
[2]   Nuclear quantum effects and enzyme dynamics in dihydrofolate reductase catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Hammes-Schiffer, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (12) :3283-3293
[3]   Network of coupled promoting motions in enzyme catalysis [J].
Agarwal, PK ;
Billeter, SR ;
Rajagopalan, PTR ;
Benkovic, SJ ;
Hammes-Schiffer, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (05) :2794-2799
[4]  
[Anonymous], 1966, Bioorganic Mechanisms
[5]   Conformation coupled enzyme catalysis: Single-molecule and transient kinetics investigation of dihydrofolate reductase [J].
Antikainen, NM ;
Smiley, RD ;
Benkovic, SJ ;
Hammes, GG .
BIOCHEMISTRY, 2005, 44 (51) :16835-16843
[6]   A perspective on enzyme catalysis [J].
Benkovic, SJ ;
Hammes-Schiffer, S .
SCIENCE, 2003, 301 (5637) :1196-1202
[7]   Free-energy landscape of enzyme catalysis [J].
Benkovic, Stephen J. ;
Hammes, Gordon G. ;
Hammes-Schiffer, Sharon .
BIOCHEMISTRY, 2008, 47 (11) :3317-3321
[8]   A Dynamic Knockout Reveals That Conformational Fluctuations Influence the Chemical Step of Enzyme Catalysis [J].
Bhabha, Gira ;
Lee, Jeeyeon ;
Ekiert, Damian C. ;
Gam, Jongsik ;
Wilson, Ian A. ;
Dyson, H. Jane ;
Benkovic, Stephen J. ;
Wright, Peter E. .
SCIENCE, 2011, 332 (6026) :234-238
[9]   The dynamic energy landscape of dihydrofolate reductase catalysis [J].
Boehr, David D. ;
McElheny, Dan ;
Dyson, H. Jane ;
Wright, Peter E. .
SCIENCE, 2006, 313 (5793) :1638-1642
[10]   SOME PERTINENT ASPECTS OF MECHANISM AS DETERMINED WITH SMALL MOLECULES [J].
BRUICE, TC .
ANNUAL REVIEW OF BIOCHEMISTRY, 1976, 45 :331-373