Tunable metal contacts at layered black-arsenic/metal interface forming during metal deposition for device fabrication

被引:2
作者
Kundu, Subhajit [1 ]
Golani, Prafful [2 ]
Yun, Hwanhui [1 ]
Guo, Silu [1 ]
Youssef, Khaled M. [3 ]
Koester, Steven J. [2 ]
Mkhoyan, K. Andre [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Elect & Comp Engn, 200 Union St SE, Minneapolis, MN 55455 USA
[3] Qatar Univ, Coll Arts & Sci, Mat Sci & Technol Grad Program, 100 Aljamaa St, Doha 2713, Qatar
关键词
Compendex;
D O I
10.1038/s43246-022-00233-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding the kinetics of interfacial reaction in the deposition of metal contacts on 2D materials is important for determining the level of contact tenability and the nature of the contact itself. Here, we find that some metals, when deposited onto layered black-arsenic films using e-beam evaporation, form a-few-nm thick distinct intermetallic layer and significantly change the nature of the metal contact. In the case of nickel, the intermetallic layer is Ni11As8, whereas in the cases of chromium and titanium they are CrAs and a-Ti3As, respectively, with their unique structural and electronic properties. We also find that temperature, which affects interatomic diffusion and interfacial reaction kinetics, can be used to control the thickness and crystallinity of the interfacial layer. In the field effect transistors with black-arsenic channel, due to the specifics of its formation, this interfacial layer introduces a second and more efficient edge-type charge transfer pathway from the metal into the black-arsenic. Such tunable interfacial metal contacts could provide new pathways for engineering highly efficient devices and device architectures. In 2D materials devices, understanding interfacial reactions in the formation of metal contacts is important for tuning their properties. Here, electron microscopy reveals the formation of an intermetallic contact layer, characterized by an efficient edge-type charge transfer, when nickel, chromium, or titanium is deposited onto black-arsenic films.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Electrical contacts to two-dimensional semiconductors [J].
Allain, Adrien ;
Kang, Jiahao ;
Banerjee, Kaustav ;
Kis, Andras .
NATURE MATERIALS, 2015, 14 (12) :1195-1205
[2]   DEPOSITION TEMPERATURE OF EVAPORATED PERMALLOY FILMS [J].
BOURNE, HC ;
CHOW, LG ;
BARTRAN, DS .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1971, 8 (05) :619-&
[3]   Isolation and characterization of few-layer black phosphorus [J].
Castellanos-Gomez, Andres ;
Vicarelli, Leonardo ;
Prada, Elsa ;
Island, Joshua O. ;
Narasimha-Acharya, K. L. ;
Blanter, Sofya I. ;
Groenendijk, Dirk J. ;
Buscema, Michele ;
Steele, Gary A. ;
Alvarez, J. V. ;
Zandbergen, Henny W. ;
Palacios, J. J. ;
van der Zant, Herre S. J. .
2D MATERIALS, 2014, 1 (02)
[4]   Black Arsenic: A Layered Semiconductor with Extreme In-Plane Anisotropy [J].
Chen, Yabin ;
Chen, Chaoyu ;
Kealhofer, Robert ;
Liu, Huili ;
Yuan, Zhiquan ;
Jiang, Lili ;
Suh, Joonki ;
Park, Joonsuk ;
Ko, Changhyun ;
Choe, Hwan Sung ;
Avila, Jose ;
Zhong, Mianzeng ;
Wei, Zhongming ;
Li, Jingbo ;
Li, Shushen ;
Gao, Hongjun ;
Liu, Yunqi ;
Analytis, James ;
Xia, Qinglin ;
Asensio, Maria C. ;
Wu, Junqiao .
ADVANCED MATERIALS, 2018, 30 (30)
[5]  
Chhowalla M, 2016, NAT REV MATER, V1, DOI [10.1038/natrevmats.2016.52, 10.1038/natrevmats2016.52]
[6]   THE SCATTERING OF ELECTRONS BY ATOMS AND CRYSTALS .1. A NEW THEORETICAL APPROACH [J].
COWLEY, JM ;
MOODIE, AF .
ACTA CRYSTALLOGRAPHICA, 1957, 10 (10) :609-619
[7]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116
[8]  
FLEET ME, 1973, AM MINERAL, V58, P203
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Ambipolar transport in van der Waals black arsenic field effect transistors [J].
Golani, Prafful ;
Yun, Hwanhui ;
Ghosh, Supriya ;
Wen, Jiaxuan ;
Mkhoyan, K. Andre ;
Koester, Steven J. .
NANOTECHNOLOGY, 2020, 31 (40)