Degradation of CO2 through dielectric barrier discharge microplasma

被引:33
|
作者
Duan, Xiaofei [1 ]
Li, Yanping [1 ]
Ge, Wenjie [1 ]
Wang, Baowei [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
carbon dioxide; carbon monoxide; dielectric barrier discharge; degradation; microplasma; CARBON-DIOXIDE; GAS TUNNEL; PLASMA; DECOMPOSITION; CONSUMPTION; CONVERSION; SYNGAS; CHINA;
D O I
10.1002/ghg.1425
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The continually increasing use of fossil fuels throughout the world has caused carbon dioxide (CO2) concentration to grow rapidly in the atmosphere. Increasing CO2 emissions are the major cause of global warming, and a number of studies have been done to show the predicted effects of global warming. This paper reported a method of degradation of CO2 through dielectric barrier discharge (DBD) plasma; a microplasma reactor was used to decompose CO2 into carbon monoxide (CO) at normal atmosphere and room temperature. Gas chromatography was used to analyze the compositions of the outlet gases. No carbon deposits were found in this work. A variety of parameters, such as feed flow rate, input power, frequency, discharge gap, and external electrode length were investigated. The effects of these parameters on CO2 conversion were examined. At the same time, the effects of feed flow rate and input power on the energy efficiency were studied. The results indicated that a higher conversion of CO2 can be realized with a lower feed flow rate, a limited higher input power and a lower frequency. However, a higher feed flow rate and a lower input power were beneficial for energy utilization. The discharge gap had a little effect on the conversion of CO2 in microplasma reactor. In this work, the highest conversion of CO2 was 18.0%, and the highest energy efficiency was 3.8%. The DBD microplasma is a promising method for decomposing CO2.(c) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [11] Design and optimization of dielectric barrier discharge microplasma stamps
    Lucas, N.
    Hinze, A.
    Klages, C-P
    Buettgenbach, S.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (19)
  • [12] Effect of Dielectric Barrier Materials on Conversion Characteristics of Low Pressure CO2 Dielectric Barrier Discharge
    Fu, Qiang
    Ye, Zifan
    Wang, Yufei
    Chang, Zhengshi
    Shiyou Xuebao, Shiyou Jiagong/Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39 (05): : 1003 - 1012
  • [13] Oxidation of CH4 by CO2 in a dielectric barrier discharge
    Martini, L. M.
    Dilecce, G.
    Guella, G.
    Maranzana, A.
    Tonachini, G.
    Tosi, P.
    CHEMICAL PHYSICS LETTERS, 2014, 593 : 55 - 60
  • [14] Simulation of CO2 Decomposition in a Dielectric Barrier Discharge to Produce Ozone
    Chin, Oi Hoong
    Anpalagan, Rajhaletchumy
    Atan, Nur Hidayah Mohamad
    Jayapalan, Kanesh Kumar
    Woo, Haw Jiunn
    Tou, Teck Yong
    JURNAL FIZIK MALAYSIA, 2022, 43 (01): : 10157 - 10166
  • [15] Thermodynamic description of CO2 conversion by a dielectric barrier discharge process
    Borghei, Sepideh Mousazadeh
    Brueser, Volker
    Kolb, Juergen F.
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [16] Effect of Argon or Helium on the CO2 Conversion in a Dielectric Barrier Discharge
    Ramakers, Marleen
    Michielsen, Inne
    Aerts, Robby
    Meynen, Vera
    Bogaerts, Annemie
    PLASMA PROCESSES AND POLYMERS, 2015, 12 (08) : 755 - 763
  • [17] Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma
    Martens, T.
    Bogaerts, A.
    Brok, W. J. M.
    van der Mullen, J. J. A. M.
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2007, 22 (09) : 1033 - 1042
  • [18] Development of a dielectric-barrier discharge enhanced microplasma jet
    Kiriu, Shinya
    Miyazoe, Hiroyuki
    Takamine, Fumitoshi
    Sai, Masaki
    Choi, Jai Hyuk
    Tomai, Takaaki
    Terashima, Kazuo
    APPLIED PHYSICS LETTERS, 2009, 94 (19)
  • [19] Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
    Chen, Pan
    Shen, Jun
    Ran, Tangchun
    Yang, Tao
    Yin, Yongxiang
    PLASMA SCIENCE & TECHNOLOGY, 2017, 19 (12)
  • [20] Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma
    陈攀
    沈俊
    冉唐春
    杨涛
    印永祥
    Plasma Science and Technology, 2017, 19 (12) : 123 - 128