Degradation of CO2 through dielectric barrier discharge microplasma

被引:33
|
作者
Duan, Xiaofei [1 ]
Li, Yanping [1 ]
Ge, Wenjie [1 ]
Wang, Baowei [1 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
carbon dioxide; carbon monoxide; dielectric barrier discharge; degradation; microplasma; CARBON-DIOXIDE; GAS TUNNEL; PLASMA; DECOMPOSITION; CONSUMPTION; CONVERSION; SYNGAS; CHINA;
D O I
10.1002/ghg.1425
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The continually increasing use of fossil fuels throughout the world has caused carbon dioxide (CO2) concentration to grow rapidly in the atmosphere. Increasing CO2 emissions are the major cause of global warming, and a number of studies have been done to show the predicted effects of global warming. This paper reported a method of degradation of CO2 through dielectric barrier discharge (DBD) plasma; a microplasma reactor was used to decompose CO2 into carbon monoxide (CO) at normal atmosphere and room temperature. Gas chromatography was used to analyze the compositions of the outlet gases. No carbon deposits were found in this work. A variety of parameters, such as feed flow rate, input power, frequency, discharge gap, and external electrode length were investigated. The effects of these parameters on CO2 conversion were examined. At the same time, the effects of feed flow rate and input power on the energy efficiency were studied. The results indicated that a higher conversion of CO2 can be realized with a lower feed flow rate, a limited higher input power and a lower frequency. However, a higher feed flow rate and a lower input power were beneficial for energy utilization. The discharge gap had a little effect on the conversion of CO2 in microplasma reactor. In this work, the highest conversion of CO2 was 18.0%, and the highest energy efficiency was 3.8%. The DBD microplasma is a promising method for decomposing CO2.(c) 2014 Society of Chemical Industry and John Wiley & Sons, Ltd
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [1] Homogeneous dielectric barrier discharge in CO2
    Bajon, C.
    Dap, S.
    Belinger, A.
    Guaitella, O.
    Hoder, T.
    Naude, N.
    PLASMA SOURCES SCIENCE & TECHNOLOGY, 2023, 32 (04):
  • [2] Characteristics of Dielectric Barrier Discharge Microplasma
    Blajan, Marius
    Shimizu, Kazuo
    2013 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2013,
  • [3] Temporal evolution of dielectric barrier discharge microplasma
    Blajan, Marius
    Shimizu, Kazuo
    APPLIED PHYSICS LETTERS, 2012, 101 (10)
  • [4] The Mutual Conversion of CO2 and CO in Dielectric Barrier Discharge (DBD)
    Guangyun Zheng
    Jiemin Jiang
    Yuping Wu
    Renxi Zhang
    Huiqi Hou
    Plasma Chemistry and Plasma Processing, 2003, 23 : 59 - 68
  • [5] The mutual conversion of CO2 and CO in dielectric barrier discharge (DBD)
    Zheng, GY
    Jiang, JM
    Wu, YP
    Zhang, RX
    Hou, HQ
    PLASMA CHEMISTRY AND PLASMA PROCESSING, 2003, 23 (01) : 59 - 68
  • [6] CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed
    De Bie, Christophe
    van Dijk, Jan
    Bogaerts, Annemie
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (44): : 25210 - 25224
  • [7] Fluid modelling of CO2 dissociation in a dielectric barrier discharge
    1600, American Institute of Physics Inc. (119):
  • [8] Fluid modelling of CO2 dissociation in a dielectric barrier discharge
    Ponduri, S.
    Becker, M. M.
    Welzel, S.
    van de Sanden, M. C. M.
    Loffhagen, D.
    Engeln, R.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (09)
  • [9] Influence of dielectric barrier materials to the behavior of dielectric barrier discharge plasma for CO2 decomposition
    Li, RX
    Yamaguchi, Y
    Shu, Y
    Qing, T
    Sato, T
    SOLID STATE IONICS, 2004, 172 (1-4) : 235 - 238
  • [10] ANALYSIS AND COMPARISON OF THE CO2 AND CO DIELECTRIC BARRIER DISCHARGE SOLID PRODUCTS
    Belov, I.
    Paulussen, S.
    Bogaerts, A.
    HAKONE XV: INTERNATIONAL SYMPOSIUM ON HIGH PRESSURE LOW TEMPERATURE PLASMA CHEMISTRY: WITH JOINT COST TD1208 WORKSHOP: NON-EQUILIBRIUM PLASMAS WITH LIQUIDS FOR WATER AND SURFACE TREATMENT, 2016, : 196 - 199